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FOREWORD

This report contains the final results of the studies conducted under

Contract NASZ-3918, Technological Requirements Common to Manned

Planetary Missions. This report consists of five volumes. The first volume

(SD 67-621-I) summarizes the study results. The detailed descriptions of

the study are presented in the following volumes:

Appendix A - Mission Requirements (SD 67-621-2)

Appendix B - Environments (SD 67-62 I-3)

Appendix C - Subsystem Synthesis and

Parametric Analysis

(SD 67 -621-4)

Appendix D - System Synthesis and

Parametric Analysis

(SD 67-62 I-5)
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SYSTEM SYNTHESIS AND PARAMETRIC ANALYSIS

Parametric designs have been made of the modules that form the

systems {vehicles) to accomplish the designated missions. Conceptual design

drawings have been made as necessary to allow formulation of weight-scaling

equations based on realistic configurations. These equations are used in the

Weight Synthesis Computer Program to examine the sensitivity of these

vehicles to variations in design approach and uncertainties in design require-

ments. Conceptual designs will be discussed first, followed by the resulting

weight-scaling equations, weight synthesis methodology, and parametric

analysis.

CONFIGURATION DESIGN

This section summarizes the conceptual design activity performed

during the study. The scope of this activity encompasses the development of

two Earth reentry modules, six planetary excursion modules, two mission

modules, and one aerobraking spacecraft.

Since a basic objective of this phase of the study was the generation of

scaling equations for the various spacecraft modules for a broad spectrum of

planetary missions, the preparation of conceptual point designs to serve as

an anchor point for the scaling equations was considered to be essential.

The point designs serve as a check on the weight synthesis. Specifically, the
designs would illustrate the packaging requirements and constraints of the

various modules, the on-board propellants and propulsion systems, and

would delineate general structural requirements and staging concepts.

Analyses of the "first cut" concepts generally show that a disparity exists

between the concept as it is designed, and the original synthesized weight

statement upon which the concept was generated. Normally, refinement of

the synthesized preliminary weights would be accomplished by a design iter-

ation to narrow the spread between the two. However, for the purposes of

this study, this procedure is not necessary. Sufficient accuracy of the

weights can be achieved without revising the drawings. Therefore, the draw-

ings discussed in this section are to be considered only as a guide to the

formulation of weight scaling equations and not as optimum designs.

One of the initial planning tasks performed at the beginning of the study
was the preparation of a matrix of all of the spacecraft modules and crew

sizes that were of potential interest to the study. In an attempt to reduce the

- 1 -
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nun_ber of concepts to be configured during the study, a summary of previous

SD studies was conducted to identify existing module concepts that would be

directly applicable. Earth reentry module (ERM) concepts for three-, six-,

and eight-man crews in the Apollo and biconic shapes were available from

previous SD studies of Mars flyby and aerobraking spacecraft. Apollo-

shaped ERM's for larger crew sizes were obtained from in-house studies

of advanced Apollo mission studies. Planetary excursion modules (PEM)

had been designed for Mars for smaller crew sizes (three or four) for other

studies, as had mission modules (M_M) for crew sizes up to eight. Previous

SD studies of a broad spectrum of aerobraking spacecraft were adequate

for the crew sizes of three, six, and eight for cryogenic storable propellants

and nuclear propulsion systems. Subsequent to a detailed review of the

available concepts, it was possible to identify the desired new point designs

which would be appropriate to generate in this study.

The matrix of modules and crew sizes is shown on Figure 1. The

items designated "E" are applicable existing designs that were considered

suitable for this study. The items designated "N" are the point designs

which were developed in the course of this study.

EARTH REENTRY MODULE DESIGN

Biconic ERM's were developed for crews of 14 and Z0 and are shown

respectively in Figures Z and 3 • The basic biconic shape used for these

design features is a right-elliptical cone afterbody and an elliptical fore cone

as developed by Lockheed. The crewman used for the internal arrangement

is a 90-percentile astronaut in an inflated pressure suit. The 14-man

vehicle (Figure 2 )has an overall length of 6.65 meters (Z62 inches), an

overall height of 3.27 meters (129 inches), and a gross moldline volume of

29.74 cubic meters (1050 cubic feet). A 14-man crew is accommodated on

four levels of seating, with numbers of 3, 3, 4, and 4 in successive levels

from the uppermost level down. The crew ingress/egress hatch is located in

the upper surface above the second level of crew. Although no attempt was

made to provide internal equipment arrangements, past studies have shown

that there is generally sufficient volume available, in vehicles with more than

three crew members, after the crew seating arrangement has been developed

to accommodate the on-board subsystems and position them to provide a

satisfactory vehicle, center-of-gravity location.

The 20-man vehicle (Figure 3 ) has an overall length of 7.49 meters

(295 inches) an overall height of 3.7 meters (145.5 inches) and a gross mold-

line volume of 42.48 meters (1500 cubic feet). The 20-man crew is accom-

modated in 5 levels of 3, 3, 4, 5, and 5, respectively, from the uppermost

level. The ingress/egress hatch is positioned in the upper surface over the

middle level of crew.

These two concepts complete the family of point designs needed

for the Eartb reentry modules.

-Z-

SD 67-6ZI-5



O

oo
e-4

z

z

z
O z

z

z z

e.-4

GO

",D

-I

-1

I

l

I A

z z

I I
A

I I

Z

z_
v

Z

l-

l

[

l

4.a

o

o0
°,-4

o

a0

r_

b_

o
O

r_

O

A

ua -o

v

,= _ o .o_

0

0

r_

.o.
0

-3-

SD 67-621-5



PLANETARY EXCURSION MODULE DESIGN

Ballistic Mars Excursion Module (MEM)

Two point designs for ballistic MEM's were designated on the module

concept summary as being of interest. These vehicles were to be sized for

crews of 10 and 16. Subsequent to the conceptual design of the 10-man vehicle,

which is described in the following paragraph, the requirement to examine

the 16-man vehicle was deleted from the study. This decision was a direct

consequence of the size trend indicated by the 10-man point design.

Two conceptual designs for the 10-man vehicle have been prepared, the

second concept being a variation of the Apollo shape to provide higher volu-

metric efficiency for larger crew sizes. The first concept shown in

Figure 4 , is basically a modified Apollo shape and is based upon recent

SD studies of manned planetary excursion modules of three- to four-man

crew for Mars. As a direct consequence of the revision of the estimates of

the density of the Martian atmosphere, the shape of the ballistic vehicles has

been altered from that of the basic Apollo, which has an aft body cone angle

of 64 degrees. To provide the significant increase in base area for a lower

W/CDA and without an excessive increase in surface area of the aft body cone,

the aft body angle was increased to 90 degrees. The basic vehicle has an

overall height of 7.92 meters (312 inches) and a base diameter of 13.56

meters (534 inches). The gross weight is estimated to be 5,300 kilograms

(117,000 pounds). The general arrangement consists of a single-level crew

compartment that serves as the mission module for the stay time on the

surface of the planet. A single propulsion system using OFz/MMH propellants

is used for terminal retro and landing and eventual ascent. 1 Four sections of

the heat shield are hinged and deployed to serve as landing shoes. At initia-

tion of ascent, the center cone of the vehicle separates and pulls out of the

peripherical structure which contains the landing gear.

At the completion of this first concept, shown in Figure 4 , it was

apparent that the concept was extremely inefficient from staging considerations

because the entire living quarters were being returned as part of the ascent

stage. The alternate design made to improve the staging efficiency is shown

in Figure 5 . In the alternate concept, the crew compartment is essentially

of a high-density loading configuration, with the crew accommodated in three

levels of seats for landing and return only. The two upper crew members have

multiposition seats to permit visual assessment of the terrain for final touch-

down. The other crew seats are fixed in a single position to accommodate

entry deceleration and ascent acceleration "g" loadings. The primary portion

of the living quarters and laboratory space is located in the lower landing stage.

Access to this pressurized section is through crew compartment floor hatches and

descent throughapassage-waybetween the fuel tanks. Atotalof Z9.4M 3(1040ft 3)

IFLOX/CH4 is also considered to be an attractive space storable propellant. Because of similarities in bulk

density and specific impulse, the configurations shown are appropriate for this propellant.

-4-
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is available in the one pressurizable compartment located between the aft

pair of landing gear heat shield segments. Three other equivalent sized com-

partments are available, spaced between the sections of the heat shield which

are deployed as landing gear pads. Access to two of these compartments, on

an "if required" basis, has been provided by elliptical pressurized tunnels

which extend from the primary section. These passageways have an internal

height of 1.42 meters (56 inches), which would permit a crew member to

walk in a slightly stooped attitude. The height of the tunnel is limited by the

space available between the outside structure of the vehicle and the landing

gear. An airlock has been provided to facilitate ingress and egress to the

planet surface from the living quarters compartment. A weight iteration on

this concept resulted in a decrease in estimated gross weight and the attendant

base diameter as a result of the more efficient ascent staging brought about

by minimizing the size of the ascent crew compartment. The modified aft

body shape, consisting of two different conic angles, has been evaluated from

aerodynamic considerations and is considered to be satisfactory, provided

that drogue chutes are used to provide stability after entry and prior to ignition

of the terminal retro and landing propulsion system. Because of the low den-

sity of the Martian atmosphere, parachutes were not considered for descent

and landing.

Lifting Body Mars Excursion Module

Two lifting-body PEM concepts --a 10-man and a 16-man vehicle --were

identified on the point design module matrix, (Figure 1 ), as being necessary.

The basic body of these vehicles is a scaled half-conic shape known as D-9,
which was developed by Aeronutronics under NASA contract in 1963. This

vehicle has subsequently been used as a baseline lifting body configurations in

all studies conducted by SD. Two different versions of the basic D9 shape

exist, one which assumes a canted angle landing attitude, and the other which

lands in a vertical tail-sitting attitude. This latter mode and configuration was

used in the point designs that will be described in the following paragraphs.

The original lifting body configuration was predicated upon a more dense

Martian atmosphere than is currently being used as a model. Consequently,

additional planform area must be provided to comply with the lower W/CLA

required to perform a lifting entry into the VM Martian atmosphere currently

used as a design ground rule. In the two concepts prepared for this current

study, the wing area is obtained by providing two surfaces that are hinged to

fold out along the side of the body. This approach was used to provide wings
that would have a simple deployment scheme and would have a minimum of

effect on stowage and integration of the lifting body vehicle in the aerobraking

spacecraft concepts subsequently developed for this study. The projected

planform of the basic body of the vehicle and the desire to provide a swept

- 13-
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leading edge for the deployed wings does not permit obtaining a total wing area

equal to that of the basic body, but generally only about an increase of 55 per-

cent, depending upon the specific vehicle. In all cases, the outer tip of the

deployed wings is folded down to provide increased lateral stability and to

improve the overall aerodynamic characteristics of the vehicle. During entry,

vehicle control will be provided by movable aft body mounted surfaces and a

reaction control system mounted on the aft surface.

For purposes of the gross conceptual generation of I0- and 14-man

lifting body vehicles, the staging approach and general internal arrangement

of the vehicle is the same as the Aeronutronics final design, with appropriate

changes to accommodate the increased propellant weights and larger mission

quarters for the increase in numbers of crew. Each vehicle utilizes a four-

legged landing gear, which is stowed at the aft end of the body prior to

deployment.

10-Man Lifting Body MEM

The configuration of the 10-man vehicle is shown in Figure 6. This

vehicle has an overall length of 12. 3 meters (484 inches), a maximum body

width of 10.81 meters (426 inches) and an estimated gross weight of

60, 500 kilograms (133,400 pounds). The 10-man crewis accommodated in

a 5.03 meter (198 inch) -long nose section of the vehicle in a high-density,

pressurized compartment during entry, landing, and ascent. A two-man

seating arrangement accommodates four in the first row and six in the aft

row. The crew compartment section contains all of the flight control systems,

displays, and life support systems required for descent and ascent. In

addition, it contains the ascent reaction control system and a docking inter-

face and associated systems for docking with the orbiting spacecraft

subsequent to ascent from the surface. Access to the mission living quarters

is provided by an interconnecting tunnel extending from the pressure bulkhead

of the crew compartment to the mission quarters located in the aft end of the
vehicle.

Propellants used for the vehicle are OFz/MMH with I0,600 kilograms

(23,400 pounds) provided for descentand 15,500 kilograms (34,020 pounds) for

stage l ascent and 9, Z00 kilograms (Z0,250 pounds) for stage 2 ascent. The

propellant tanks for stage 1 ascent are jettisoned after propellant expenditure

during ascent. Separate throttleable plug nozzle rocket motors (which are

desirable on the basis of volumetric considerations) are used for descent
and ascent.

The maximum wing area that is available by folding the two wing sections

across the upper surface of the body is 48.3 M 2 (520 ftZ). The resultant total

planform area, including that of the body is (1438 square feet) which provides

a W/CLA of 730 kg/M 2 (150 lb/ftZ).

- 14-
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16-Man Lifting Body MEM

The configuration for this vehicle is shown in Figure 7. The general

arrangement and concept design philosophy for the 16-man vehicle is the

same as previously discussed for the 10-man vehicle. This vehicle has an

overall length of 14.8 meters (584 inches), a body width of 12.8 meters

(504 inches), and a gross weight of 84,700 kilograms (186,700 pounds). The

1 6-man crew is accommodated during descent and ascent in a pressurized

nose compartment 3.25 meters (128 inches) long, in a three-row seating

arrangement, with two-men abreast in the first row, and six men each in the

aft two rows. The propellants are OFz/MMH with 14,850 kilograms

(32,720 pounds) provided for descent, (47,750 pounds) in stage 1 ascent and

lZ, 850 kilograms (Z8,350 pounds) in stage 2 ascent. The available area for

the folded wings results in a deployed wing area of 66.0 M 2 (710 ft2). The

total resultant planform area at entry is 185. 1 M 2 (1992 ft 2) with a W/CLA

of (150 ib/ftZ).

The ground rule noted above regarding use of propulsive landing for all

PEM's also affects the lifting body PEM configurations. The wings shown on

the two configurations of Figures 6 and 7 will not be used. As in the case

of the Apollo-shaped PEM's, it was not necessary to modify the drawings;

weights were adjusted to compensate for the change in design.

Retrobraking Planetary Excursion Modules

This class of planetary excursion moduIes, which has been identified

for conceptual developement on the module summary matrix (Figure 1),

includes 3- and 10-man vehicles for nonatmospheric planetary bodies. The

specific planetary bodies for which the vehicles were configured are the

asteroids Ceres and Vesta, Jupiter's moon Ganymede, and Mercury. The

basic design philosophy used in the conceptual generation of these vehicles

reflects that philosophy currently utilized in the Lunar Module, which is

part of the Apollo program. Since these vehicles are operating on nonatmos-

pheric bodies_', aerodynamic considerations do not exercise any influence on

the general arrangement. All of the vehicles incorporate a high-density crew

compartment used for descent and ascent, with separate propulsion and pro-

pellant systems used for each. At this point, no attempt has been made to

force commonality on the designs, such as using a single stage on one vehicle

and subsequently using it as the ascent stage for another vehicle. All of the

vehicles utilize FLOX/MMH propellants, and have been configured for a

nominal 30-day mission stay time.

*Mercury is assumed to have no significant atmosphere for purposes of this study.

17-
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3-Man Retro PEM (Ceres/Vesta)

A 3-man retro PEM for Ceres and Vesta is shown in Figure 8. This

vehicle has an estimated gross weight of 14,000 kilograms (31,000 pounds}.

The general arrangement of the vehicle features a hexagonal-shaped descent

stage which incorporates the descent propellant tanks, propulsion system,

mission life support consumables, descent reaction control system (RCS)

and a four-legged landing gear system. Mounted on the upper surface of

the landing stage are the ascent vehicle and a cylindrical-shaped pressur-

ized structure that serves as the crew mission quarters.

The descent stage provides for 2,350 kilograms (5200 pounds) of FLOX/

MMH propellants contained in six spherical tanks with the other mission con-

sumables and RCS propellants contained in spherical and cylindrical tanks

integrated into suitable spaces in the landing stage. The four-legged landing

gear has been designed to fold in under the body to reduce the overall space

requirements when the vehicle is integrated into an overall spacecraft. A

throttleable throat-gimbaled, pressure-fed engine of 835-kilogram (1800-pound)

thrust is used for descent and terminal landing.

The ascent stage is a complete autonomous stake that accommodates

the 3-man crew in a standing position during descent and ascent. The pres-

surized compartment is essentially a cylindrical section Z. 44 meters (96 inches)

in diameter and 1.83 meters (7Z inches) long with a gross volume of 6.3 m3

(ZZZ ft3). Ascent propellants, weighing 406 kilograms (900 pounds), are

supported off of the basic cylindrical structure in spherical and cylindrical

tanks. A single pressure-fed engine of 384-kilogram (850-pound) thrust pro-

trudes through the floor of the crew compartment and is sealed from the

compartment by a tapered cylindrical can. A docking interface (and appro i

priate systems)is integrated into the upper surface of the crew compartment

to permit docking with the parent spacecraft after ascent. A separate ascent

reaction control system is provided for the ascent stage.

A cylindrical pressurized compartment Z. 44 meters (96 inches) in

diameter and 3.96 meters (156 inches) long is located adjacent to the aft face"

of the crew compartementto serve as the mission quarters. Access to this

compartment is through a pressurized door integrated into the aft bulkhead of

the crew compartment and through a short interconnecting tunnel between the

two compartments. Prior to ascent, the tunnel structure would be severed

at the crew compartment aft face. The mission quarters has a gross volume

of 14.9 m 3 (53Z ft3), which would be supplemented b_ the 6.3 m 3 (ZZZ ft3)

crew compartment to provide approximately 21.2 m s(750 ft3) gross. The

crew compartment could be used as a control center and possibly as sleeping

quarters during the stay time. Access to the target body surface is provided

through a cylindrical walk-in airlock integrated in the aft side of the mission

quarters. The lower end of the airlock would be opened and descent made by

a ladder to the surface.

-Zl -
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In the stowed configuration in the parent spacecraft, the 10-man

vehicle would require a clearance envelope of 6. 5 meters (260 inches) in

diameter and 8.83 meters (348 inches) long.

3-Man Retro PEM (Ganymede)

A 3-man retrobraking planetary excursion module for Ganymede is

shown in Figure I0. This vehicle has an estimated gross weight of

17,300 kilograms (37, 900 pounds). The general arrangement is a logical

extension of the basic 3-man vehicle previously configured for Ceres and

Vesta, differing basically in the size of the descent and ascent rocket motors

and propellant quantities. The descent stage features a hexagonal shaped

segmented box structure which incorporates the descent propellant tanks,

propulsion system, mission life support consumables, descent attitude

control system, and a four legged landing gear system. Mounted on the

upper surface of the landing stage are the ascent stage and the cylindrically

shaped pressurized compartment which serves as the crew mission quarters.

The descent stage provides for 3,740 kilograms (8, Z50 pounds) of

FLOX/MMH propellants contained in six spherical tanks with the other mission

consumables and Attitude Control Subsystem (ACS) propellants contained in

cylindrical tanks integrated into available spaces in the landing stage. The

four legged landing gear has been designed to fold in under the body to reduce

the overall space requirements when the PEM is subsequently integrated into

a complete spacecraft. A throttleable throat-gimballed pressure-fed engine

of 2,800 kilograms (6, 150 pounds) thrust is used for descent and terminal

landing.

The ascent stage is a complete autonomous stage that accommodates

the 3-man crew in a standing position during ascent and descent. The

pressurized compartment is basically a cylindrical section 2.44 meters

(96 inches) in diameter and I. 83 meters (YZ inches) in length, with a gross

volume of 6.3 cubic meters (222 cubic feet). Ascent propellants, weighing

3,010 kilograms (6, 650 pounds) are supported off of the basic cylindrical

structure in spherical and cylindrical tanks. A single pressure-fed engine

of I, 340 kilograms (Z, 950 pounds) thrust protrudes through the floor of the

crew compartment and is sealed from the compartment by a tapered cylin-

drical can. A docking interface and appropriate systems are integrated into

the upper surface of the crew compartment to permit docking after ascent.

A separate ascent attitude control system is provided for this stage.

The mission quarters for this vehicle is a cylindrical pressurized

compartment Z. 44 meters (96 inches) in diameter and 3.96 (156 inches) meters

in length positioned adjacent to the aft face of the ascent stage crew compart-

ment. Pressure doors in both compartments and a short interconnecting

tunnel provides access between the two compartments. The mission quarters

has a gross volume of 14.93 cubic meters (532 cubic feet) which would be

-ZP-
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supplemented by the 6.3 cubic meters (222 Cubic feet) crew compartment

volume to provide approximately 21. Z cubic meters (750 cubic feet) gross.

A cylindrical airlock has been externally mounted to the aft surface of the

mission quarters to provide access to the surface of the target body. The

lower end closure of airlock serves as a hatch for access to an externally
mounted ladder.

In the stowed configurations this vehicle would require a clearance

envelope of 6.5 meters (256 inches) in diameter and a length of 5.72 meters

(225 inches) in the parent spacecraft.

10-Man Retro PElV[ (Ganymede)

The configuration for this vehicle is shown in Figure 11. It utilizes a

separate ascent and descent stage with the mission quarters compartment

integrated into the landing stage. This concept is basically identical to the

10-man retro PElk4 previously developed for Ceres and Vesta. Since the

propulsion requirements are greater for Ganymede, larger rocket engines

and more propellant have been accommodated in the ascent and descent stages.

The landing stage consists of a hexagonal shaped box structure with

internal sector beams to provide structural support for the six spherical

propellant tanks with a capacity of 7j 500 kilograms ( 16,500 pounds), the

descent attitude control propellants and the mission life support consumables,

and the four-legged deployable landing gear. A throat-gimballed throttleable

pressure-fed engine with a thrust level of 5,550 kilograms (12, 300 pounds)

is provided for descent retro-propulsion and terminal landing.

As previously discussed under the 10-man Ceres and Vesta retro PEM

configurations, the mission quarters compartment has been configured to be

a cylindrical section 6.1 meters (240 inches) in diameter with flat ends with

an internal clear ceiling height of 2.14 meters (84 inches). The gross mold

line pressurized volume of the compartment is 66 cubic meters (2, 340 cubic

feet). The compartment is positioned symmetrically on top of the descent

stage and is provided with an internal cylindrical alrlock to facilitate access

to the target body surface by a ladder.

The ascent stage is located on top of the mission quarters, offset to

provide adequate down visibility to the operating crew for landing site assess-

ment prior to touchdown. The ascent propellants weighing 6, 050 kilograms

(13,300 pounds) are contained in spherical and cylindrical tanks which are

structurally supported off of the crew compartment. The 10-man crew is

accommodated in a standing position during descent and ascent in a 3.06 meter

(120 inch) diameter cylindrical pressurized compartment 1.98 meters

(78 inches) long. A pressure-fed engine with a thrust level of 2,670 kilograms

(5,900 pounds) protrudes in an enclosed well through the floor of the compart-

ment to provide a clear separation plane for the ascent stage. Separate

attitude control nozzles and propellant systems are provided for both the
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SD 67-621-5



7 '-k-7 :

' 'qJ_.'a_-,,., .......
i

i



l ii I il

5"-d&-_d

Ii j ...
II E

l] II !

-U It
PRECEDING PAGE BLA,NK NOT FILMED-

i I



/I

i

-- 8

d



_ (z2o"_ • _._.o,,4

/

Fig_

-U u I 11



FO0 D

• "TOTA L_

I

A_CENT PAYL0_D |0000 LI_

A_CP.NT P_!_,.0P E..L l-At,,4"I" I_,300

_t.__C P..P4T _:3_.YL 0_ D G_,O00
...... OP_-Z,c_._-i" c_op'L, I(s, 500

.... TOT*_L. I01 t _,o ¢_

bfl h4 I,-I B4,, 4-'_/FT. "_

F'i_O "X <30, 9 */ f:'T._

-- _) DAY HISSION (IOHCN)

........ NIT2OC_E_4 "_ I"70 LB.,%

Z, Ao o

i • _oo
! , _o0

_, s _(..%e
(= 0,so

28, 1_o0

7,, _, 00

4_, 800

l_OgO
_'t5

3 ,d,II, o

_re 11. lO-Man Retro PEM - Ganymede

- 35,36 -

SD 67-6Zi-5



ascent and descent stages. Access to the mission quarters is provided by

a pressure=tight door in the aft face of the crew compartment and an adjacent

vertical passageway. The docking interface and associated systems have been

integrated into the forward facing surface of the crew compartment to reduce

overall stowed height and to provide easy direct visual assessment during the

docking maneuver.

In the stowed configuration in the parent spacecraft, the 10-man vehicle

would require a clearance envelope 7. Z7 meters (286 inches) in diameter and

9.06 meters (357 inches) in length.

Mercury Ketro PEM

The Mercury PEM is identical in concept to the Ganymede configuration,

differing basically in the size of the descent and ascent rocket motors and

propellant quantities. Since the propulsion requirements for Mercury land-

ings are greater than the requirements for Ganymede landings, larger rocket

engines and more propellant will be required in the ascent and descent stages.

Detail configuration drawings were not generated for the Mercury PEM's

since it was determined that the configurations developed for Ceres, Vesta,

and Ganymede provided adequate data for the development of the PEM weight

scaling equations.

Venus Exctlrsion Module

A gross analysis was conducted to establish the order of magnitude of

the required mass of a Venus excursion module (VEM). The configuration

assumed was an aerobraking vehicle with a propulsive terminal descent.

The manned module was assumed to be a Z970 kg (6500 lb) two-man module

with a minimum volume and a habitable lifetime of seven days or less. A

three stage launch vehicle was assumed with an equal distribution of the

total characteristic velocity requirement, a stage mass fraction of 0.90 for

all stages, and NZO4/MMH propellant. Specific impulse values of Z40 and

27Z seconds were considered for the first stage with second and third stage

values of 318 and 320 seconds, respectively. The specific impulse values

were based on the NASA/MSFC low density atmospheric model. Based on

the above assumptions, the required VEM lift-off weight is shown in Figure 1Z

as a function of the total launch vehicle characteristic velocity requirement.

It has been estaimated that the ascent characteristic velocity requirement

will not be less than 10.67 km/s (35,000 ft/s) which would require a lift-off

weight of approximately 363,000 kg (800,000 lb) assuming the lower first

stage specific impulse. For comparison, the characteristic velocity require-
ment for direct ascent into a 300-nautical-mile Earth orbit for the Saturn IB

is 10.07 km/s (33,050 ft/s) using optimum steering after launch escape tower

jettison. A study reported in Reference 1 probably establishes the upper

limit on the characteristic velocity requirements. The characteristic velocity
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requirements were determined in the reference report for various initial

thrust to weight ratios and number of stages• The minimum characteristic

velocity requirement for a three stage vehicle was 1Z. 10 km/s (39,700 ft/s)

which, for the above assumptions, results in a lift-off weight of 840,000 kg

(1,850,000 lb). The characteristic velocity requirements presented in the

reference were based on a gravity turn steering mode which would result

in a higher characteristic velocity requirement than would result if a more

optimum steering mode were employed.

MISSION MODULES

Mission module configurations for crew sizes of 14 and Z0 men have

been parametrically configured in Figure 13. The ground rules that vcere

established for the mission modules include the _ollowing:

1. Mission durations of 500, 1000, and 1500 days.

2. Partially closed ecological system.

o Provisions for a "storm cellar" to provide radiation protection

during peaks of solar activity and serve as a basic command and
control center.

o Provide sufficient volume for on-board personnel centrifuges for

periodic gravity conditioning.

The basic elements that were a factor in determining the volumes for

the six mission modules are the following:

1. Crew and crew support

2. Furniture, housekeeping

3. Food management

4. Water supply

5. Waste management

6. Temperature and humidity control

. 7. Atmosphere

8. Instrument controls
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9. Storm cellar

I0. Centrifuge

l l. Free volume for crew

IZ. Life support system gas storage

The scaling equations used to establish the specific volumes for these

items were obtained from Reference 2. Table 1 summarizes the volumes

calculated for the two different crew sizes and three mission durations.

It should be noted that a free volume per man of 600 cubic feet was used

during the generation of the conceptual designs. Subsequent to the genera-

tion of the conceptual designs, a nominal value of 750 ft3/man was established

as the nominal value.

Since the mission modules will be subsequently integrated into a

variety of retrobraking and aerobraking spacecraft concepts, it was decided

to configure two different types of mission modules, one with two floors

and one with three floors. Elliptical end bulkheads with an a/b ratio of I. 8

were used. The spacing between floors was set at 84 inches for head clear-

ance. This value is a standard value currently in use. During the sizing

operation, the diameters of the mission modules was allowed to be the

dependent variable. It is assumed that during the integration of the mission

modules into the spacecraft at a later date, the concepts that have been

generated will provide a spectrum from which a near-optimum choice can

be made, with a resultant minimum of iteration for fit with specific space-

craft. It is of significance to note (Figure 13) that, if a 10 meter diameter

constraint is imposed, the mission modules will satisfy such a constraint

for all crew sizes considered. Although this conclusion is shown for a free

volume per man of 600 ft3/man, it was subsequently determined that this

conclusion is valid even if the free volume per man is increased to
750 ft3/man.

AEROBRAKING SPACECRAFT DESIGN

The first aerobraking spacecraft to be configured under this study is

shown in Figure 14. This vehicle is a 14-man spacecraft utilizing cryo-

genic propellants for the major portion of its propulsive requirements. The

basic vehicle is of biconic configuration with an overall length of 31.0 meters

(1222 inches) and a base diameter of 17.7 meters (696 inches) with an esti-

mated gross weight of 353,360 kilograms (777,000 pounds). The forward

conic section has an angle of 20 degrees, which is established by the lifting

body PEM integrated into the section. The aft body has an angle of 8 degrees,

established by aerodynamic requirements during the aerobraking maneuver.

The aerobraking vehicle utilizes two of the modules that were developed

in the early phases of the study. The MEM selected for integration is the
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10-man lifting body vehicle shown in Figure 6 and previously discussed in

this report. The 14-man mission module shown is 14-man, 500-day concept

shown in Figure 13. This module is a two-floor level pressurized cylindri-

cal can 8.47 meters (334 inches) in diameter, with an overall length of 9.43 m

(37Z inches). An Apollo-shaped ERMwith a 14-man crew capacity was

selected, although the 14-man biconic vehicle of Figure Z would integrate

equally well. The criteria for ERM selection would be primarily Earth entry
speed.

In the conceptual development of an aerobraking spacecraft, several

major design considerations must be concurrently exercised and evaluated to

configure a valid design. Included in these are c.g. /c.p. relationships,

structural and propulsion system staging approach during the mission, and
artificial gravity requirements.

For conceptual design purposes, it was assumed that the aerobraking

spacecraft could be separated on a telescoping rail system. Such an approach

could be utilized to provide a continuous artificial gravity environment during

the mission. The entire vehicle is rotated during those phases of the mission

during which the vehicle is not performing a propulsive or planetary aero-

braking maneuver. The most efficient spacecraft arrangement which satisfies

this requirement is one in which the mission module can be separated from

the rest of the vehicle resulting in a nlinimum extension of the two. Even

if an artifical gravity environment is not required, some separation (though

of a smaller distance) will probably still be required to provide for the

deployment of antennae, radiators, experiment equipments, etc.

The general arrangement of the aerobraking spacecraft features the

10-man MEM positioned in the upper half of the nose section of the spacecraft.

The lower section is occupied by 54,300 kilograms (119,800 pounds) of LHz/

LOz stage 2 planet orbit escape propellant. Since the MEM weight is greater

than the propellant weight in the nose, the aerobraker center of gravity would

be offset in that direction and, consequently, that side of the vehicle would be

at a positive angle of attack during entry. The 14-man Apollo shaped ERM

is positioned midship, with the upper apex entry hatch and passageway nested

in the end of the mission module. During the mission when the spacecraft

mission module is extended from the spacecraft for artificial gravity spinning,
the ERM could remain attached to the mission module or remain attached to

the vehicle structure to maximize the mass at that end to reduce the separation
distance between the twe extended sections.

The mission module is located along the centerline of the spacecraft at

the aft end of the aerobraker. In this position, the mission module is not

obstructed by any other major elements of the vehicle and can easily be extended

for artificial-gravity spinning.

The aft body structure features two fixed box sections that would contain

the telescoping rail system used to extend the mission module during the spin-

ning artificial-gravity mode. These two fixed sections also contain the two

- 47 -
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36,000 kilogram (80,000 pound) -thrust planet orbit escape rocket motors, the

trans-earth course correction propellant and the two 2700-kilogram (6000-

pound) -thrust rocket motors provided for that purpose. The remainder of

the aft body structure would be jettisoned after the planet orbit escape stage 1.

The two jettisonable sections contain the outboard course correction propel-

lants and propulsion systems, and the planet orbit escape stage 1 cryogenic

propellants.

Deployment of the MEM is accomplished by jettisoning the section of the

aerobraker nose structure that covers the MEM. Docking of the crew com-

partment of the MEM on return from the planet surface takes place at the

interface provided at the end of the crew transfer tunnel which connected the

mission module and PEM.

A mix of propellants is used for the cryogenic aerobraking concept. The

spinning, outbound course correction, and return course correction propel-

lants are all Aerozine 50/N20 4 storables. The main propulsive requirements

of the vehicle--planet orbit circularization and the two stages of planet orbit

escape--utilize LH2/LO 2 propellants. To provide an acceptable c.g./c.p.

relationship, the oxidizer tanks of the planet orbit escape stage 1 propellants

have been placed as far forward as possible in the structural sections allocated

for these propellants.

This aerobraking concept represents a "first-cut" configuration. It is

recognized that certain improvements could be made to increase overall

packaging efficiency if the concept was iterated. However, from size con-

siderations, it is a valid general concept.
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WEIGHT SCALING EQUATIONS

Modular weight scaling equations have been incorporated in the

SD-developed Weight Synthesis Computer Program. The modules con-

sidered are the Earth reentry modules (ERM), mission modules (MM),

planetary excursion modules (PEM), and the propulsion modules (PM) and

aerobrakers. The methodology employed in the generation of the equations

was to combine the data furnished by NASA/MAD and available at NR/SD

and extrapolate these data to form the scaling equations.

The basic logic in forming weight scaling equations involves gener-

ating a weight statement of all applicable elements and systems as a function

of the primary parameters. These elements are then combined to form the

weight scaling equations. Assumptions required to form elements of the
equations are noted.

EARTH REENTRY MODULE WEIGHT SCALING EQUATIONS

Earth reentry module weight equations have been developed for three

configurations: biconic, segmented conic, and Apollo. The systems weight
data are based on the data contained in References 3 and 4 and the ERM

structural weight data contained in Reference 5. The referenced weight
scaling equations reflect the studies based on crew sizes from six to ten

men. The parametric considerations utilized in these equations are of

sufficient flexibility to make them adequate for crew sizes of three to

twenty men. The resultant scaling equations are summarized in Tables Z
through 5.

MISSION MODULE WEIGHT SCALING EQUATIONS

The mission module weight scaling equations are based on NASA/MAD

crew support and life support subsystem weight data contained in Reference Z

and NK/SD structure, electrical power, reaction control system, and fixed

subsystem weight data. A module subsystem summary is presented in Table 6.

The structural weight is based on a cylindrical shape with either flat or

elliptical bulkheads. The mission module sizing is based on volumetric

requirements of crew, subsystems, number of floors, and bulkhead aspect

ratio. Mission module life support subsystem weight, volume and power

are shown in Table 7. A ten-percent contingency weight is included in the

total module weight. The mission module scaling equations not shown in

either Table 6 or 7 are summarized in the following subsections.
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Mission Module

Volumetric Requirement

Vmm : (Crew) • Vf + V e + Vls s + Vsc

Vsc = {Crew) • Vscf if (crew) < 4

and

where:

= 500 + 50(Crew -4) if (crew) >-4

Vmm =

Vsc :

Crew =

Vf =

Vlss

V scf =

mission module volume -_ (feet 3)

storm cellar volume ~ (feet 3)

crew size

free volume per man

7 50 ft3/man (nominal)

V e = equipment volume =

(400-< Vf <-1200)

9

i=6

= crew and life support system volume (3 types)

(a} open system

(b) water recovery only

{c) water and oxygen recovery

free volume per man, storm cellar

= 125 ft3/man (nominal).

Structural Weight Determination (W i)

Elliptical Bulkhead Geometry

Rmm = A+B- 5.25. AR. Nf/3

Discussed in Appendix C

[for 7-foot high ceiling]
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where:

A

( b 'i3B = -_ " ÷ 27/

a = -(5. Z5. Am. Nf)Z/3

1 (2 (5.25. AR" Nf) 3 - 6.44" AR • Vmm )b=z- 7

AR = bulkhead aspect ratio

Atom = _R2 Z +

AR 2 l

Rsc =(Vsc/(7_))I/Z }
Asc = Z_ Rsc (Rsc + 7)

Flat Bulkhead Geometry

Rrnr n = Vmm/(Tr Nf

Atom -- 2_ Rrn m (Rmm + 7 • Nf)

In(ZAR 2 + ZAR _AR Z- I - I) ]+ 44RNf

7-foot high ceiling

Structural Weight

W 1 = (UW)st r • Amm+(UW)sc " Asc

where:

Atom = mission modules surface area

Asc = storm cellar surface area

Rmm = mission module radius
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Rsc

Nf

(UW)str

(UW)sc

W 1 = structural weight

Meteoroid Protection System (W z)

= storm cellar radius

= number of floors (for 7-foot high ceiling)

= mission module unit structural weight

= storm cellar unit structural weight

W z

where:

(UW)mp

W2 = I(UW)mp - (UW)str] " Ammif (UW)mp >(UW)str

= 0 if (UW)mp -<(UW)st r

= mission module unit meteoroid protection weight deter-

mined from the scaling equations defined in Appendix B

Solar Radiation Protection System (W 3)

W3 = [(UW)sr- (UW)str- (UW)sc]" Asc if (UW)mp -< (UW)st r

W 3 = (UW)sr - (UW)mp - (UW)sc • Asc if (UW)mp > (UW)st r

W 3 = 0 if W3-< 0

where:

(UW)sr = storm cellar unit solar radiation protection weight deter-

mined from the scaling equations defined in Appendix B.

Electrical Power System (W 6)

kw = kwfi x + kWtc + kWls s

W 6 = (UW)ep s • kw

where:

kw = total mission module electrical power requirement (kilowatts)

= fixed housekeeping power requirementkwfi x

- 58- SD 67-6Z[-5



kWtc

kWls s

(UW)eps

W 6

Reaction Control System (WIo)

= telemeter/communication power requirement

= crew and life support system power requirement

= mission module electrical power unit weight

= electrical power system weight

W 10

9

0. OZ WIO = O.OZ i_I= W i

1 - 0.0Z - 4.4 (10 -6) . Days r

Gross Mission Module Weight

11

Wmm=_ Wi
i=l

PLANETARY EXCURSION MODULE WEIGHT SCALING EQUATIONS

Planetary excursion module weight equations have been developed for

two classes of vehicles: aerobraking vehicles for Mars and retrobraking

vehicles for Mercury, Ceres, Vesta and Ganymede. Each target has dif-

ferent structural/insulation criteria and, therefore, a different weight due

to local environmental characteristics. All other scs/ing equations for the

two classes of modules are assumed to be the same.

All planetary excursion modules are assumed to be two-stage vehicles.

The ascent stage is composed of the crew. and one-day life support and elec-

trical power systems. The equations for the life support and electrical

power systems are identical to those used in the earth reentry module. Suf-

ficient equipment and propulsion for ascent, rendezvous, and docking with

the parent spacecraft are also provided. The descent stage is composed of

the systems required to land on the surface and the systems necessary to

support the crew while on the planet or asteroid surface.

Common Systems

All systems components except the structure are considered to be the

same for all vehicles. The common ascent stage systems, their primary

characteristics and assumptions, and the associated weight equations are

presented in Table 8. A contingency of ten percent of the gross manned

capsule weight plus five percent for rendezvous and docking with the parent

spacecraft are provided. The gross manned capsule is the manned capsule

structure and all ascent stage systems except the ascent stage propellant.

The common descent stage systems are presented in Tables 9 and 10.
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Structure

A summary of the structural weight equations for the ascent stage

(Wl) and the descent stage (W12) is presented in Table 11. The structural

weight is added to the common systems weight to obtain the gross planetary

excursion module weight. Removal of crew and scientific payload repre-

sents the planetary excursion module weight at Earth orbit escape.

PROPULSION STAGE WEIGHT SCALING EQUATIONS

Stage weight scaling equations have been established using the shell

weight and engine weight characteristics supplied by NASA and modified by

SD. The scaling equations are summarized in Table 1Z. A variable (KT)
has been included in the shell weight equation to account for differences in

the structural model. In the chemical engine weight equation, the engine

thrust-to-weight ratio ( ) is obtained from a curve fit of the data contained

in Reference 7. Also, a coefficient (K) has been included to reflect the effect

of engine type on engine weight. The effects of finite burning have been

accounted for in the performance calculations by including emperical equa-

tions provided by NASA. These equations yield the gravity loss as a function

of initial thrust-to-weight ratio, specific impulse, hyperbolic excess speed,

and orbit altitude for each of the target bodies considered in the study.

Shell Weight (W 1)

A propulsion tank and system scaling equation has been established

using the shell weight characteristics supplied by NASA and modified by S_ID

to include a coefficient to account for the structural model. The propulsion

tank and systems equations are summarized as follows:

[ 0. 9/ P(6--_.4) 0. 533] + 573_; lb 1W 1 = 0. 11 K T Wp

W
P

Pp

K T

K T

= propellant weight

= bulk density

= 0. 8034 + 0. 1184 x 10 -5

(wp)°"0831z/z. 5004

- 0.730 x 10 -lz (Wp) z For Wp l04 to 1061b

For Wp = 106 to 1081b

where K T accounts for the propulsion module structural model and is based

on previous unpublished NR studies. This model accounts for the installation

of thermal and meteoroid protection to the basic structure.

1Note that the total weight of a cluster of n tanks becomes W = W no. 1
1n 1
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Engine Weight (W2j)

The engine equations are summarized as follows, together with their

prime parameters.

Chemical Engine (J = I)

W2j = K (-_)+ 99.2 N

The coefficient (K) is given by the following expressions which are emperical

equations of the curves shown in Appendix C.

K = (0. 3325) T O. 0884 for T = 2 x 104 to i x 105 pounds

K = (0.7250) T 0"0207 for T = I x 105 to 1 x 107 pounds

For all

propellant

type s

The engine thrust-to-weight ratio (T) is defined by the following equations

for storable propellants. These equations were developed from the curves

shown in Appendix C.

T = (4.302) T 0'262 for T = Z. 0 x 104 to 5.5 x 104

T = (1.929) T O. 335 for T = 5.5 x 104 to 1.5 x 105

T = (7.660) T 0'2197 for T = 1.5 x 105 to 4.4x 105

T = (45.26) T O. 0830 for T = 4.4x 105 to 2.2 x 106

T= (I01.07) T 0"0279 for T = 2.2 x 106 to 1.0 x 107

In a similar manner, the engine thrust-to-weight ratio is defined by the

following equations for LOz/LH 2 propellant.

T = (14. 63) T O. 1373 for T = Z x 104 to 4 x 105

T = (32. 074) T O. 0765 for T = 4 x 105 to 1 x 107

Solid Core Nuclear Engine (J = Z)

Wzj = 0.129 T + 7298
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During the examination of common propulsion modules (discussed in

the Mission/System section of this Appendix), fixed engines were assumed
with thrusts of 75,000 and 250,000 pounds. The resultant engine weights

are 16, 973 and 39, 548 pounds, respectively.

Gaseous Core Nuclear Engine (J = 3)

T/W e

Engine Common Equations

WZj = W o (T/Wo)/(T/We)

= pounds of thrust per pound of engine

T/W = I v/tBo sp

T = W (T/WoJ/NO

1

e(AV + dV)

v B

Wo = Wpl]l - v/v B = propulsion module gross weight

W = vW = propellant weight = W 6
p o

= stage mass fraction = 0. 99 to start iteration loop

dV = velocity loss due to gravitation field at planet location (NASA

supplied}

t B = stage propellant burning time

N = number of engines

Surface Area

The tank surface area is based on the propellant weight (Wp) and bulk

density (P) with 10 percent added to account for ullage and tank bulkheads. The

stage diameter (Ds) or the length to diameter ratio::(L/D) is required to

compute the surface area (As), as noted below in the following equations.

V = 1.10 W /P = Stage Tank Volume
s p p

Ds =[Vs/0"7854 (L/DJ] I/3
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L,o(vs,078 4os3)
A =_r (Ds)2 (L/D)

S

Interstage Weight (W 3)

Interstage weight is characterized by the type of engine system employed

in the propulsion module. The relationships for the lengths, surface area,

and weight for the various interstages are expressed parametrically as

follow s.

Chemical Engine

LIS = (0.94 - 0.07 N) Ds = length of interstage

AIS = (LIs) lr D s = area of interstage

W 3 = AIS (UW)ce = weight of interstage

Solid Core Nuclear Engine

LIS = 0. 648 x 10-5T + 28. 513

AIS = (LIs) _rD s

W3 = AIS (UW)sne

Gaseous Core Nuclear Engine

LIS = 0. 680 x 10-5T + zg. 938

AIS = (LIs) irD s

W 3 = AIS (UW)gne

(UW) = weight per foot squared for the interstage under consideration

= 2 lb/ft 2 (nominal)
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Meteoroid Protection (W 4)

The meteoroid protection system weight is the sum of the tank and

interstage surface area times a unit weight [(UW)Mp] obtained from the
meteoroid protection scaling equations (Appendis B). The meteoroid pro-

tection weight, if required, represents an incremental weight over the

basic structural weight.

W 4 = (UW)Mp(A S + AIS) = weight meteoroid protection

Thermal Protection (W 5)

The insulation weight (W 5) is the product of the insulation density,

insulation thickness, and insulated area. As discussed in Appendix B, a

nominal density of 5 lb/ft 3 was assumed during this study. The insulation

thickness is obtained from the optimization discussed in Appendix B.

Therefore,

W5 =(P INS)(doPT)(As) = weight of insulation

Propulsion Module Gross Weight (WsT G)

The gross weight is the sum of the preceding elements, i.e.,

WST G = W 1 + W25 + Wi; (J = I, 2, or 3)

i=3

AEROBRAKER MODULE WEIGHT SCALING EQUATIONS

The aerobraker shroud weight is determined by first sizing the

modules within the shroud using the previously defined scaling equations.
The volume of the individual modules and the accumulated total volume

within the shrouded configuration is derived. A packaging factor is applied

to the total volume to permit for non-ideal configuration arrangement. The

surface area of the aerobraking shroud configuration is determined and

evaluated as structural and ablator weight. The ablator determination

varies with planetary entry velocity.

A portion of the structural shroud, ablator and heat shield is ejected

prior to ignition of the planetary orbit escape propulsion stages; whereas,
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some of the ablator and meteoroid protection is burned off during planetary

entry. These losses during the mission made it necessary to modify the

propulsion module sizing routine for proper payload weight determination.

These effects are represented in the Weight Synthesis computer program as

percent of the total weight of the structural shroud, ablator and meteroid

protection at the time the loss occurs.

The shroud sizing parameters are summarized in Table 13.
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PRECEDING PAGE BLANK NOT FILMED.

WEIGHT SYNTHESIS METHODOLOGY

The planetary weight synthesis program is a computer tool, developed

by NAA-SID on company funds, to provide a simplified parametric approach

for deriving planetary vehicle, module, and subsystem weight data.

The program is designed to compute the weight of any configuration

for designated mission modes as a function of available subsystem and

modular criteria. Figure 15 presents a flow diagram of the program logic

which provides alternate capability of selecting fixted data inputs, weight

scaling equations, look-up weight tables, or complete weight synthesis. The

mission sequence diagram shown on Figure 15 illustrates the various points

in the mission for which weight computations are required, and the alternate

modes of computation. Capability is provided in the program for deriving

the weight of an Earth reentry module, Earth retro stage, mission module,

planetary excursion module, and various propulsion stages for midcourse

corrections, spin and despin of the spacecraft (if required), swingby inbound

or outbound, planetary orbit escape, planetary orbit insertion and Earth

orbit escape.

Weight synthesis is accomplished by selecting the basic mission param-

eters of target, mission mode, mission class, orbital stay times and

opportunity. The mission mode defines the various modules required to

perform a specific mission. The necessary input parameters are then

determined for each of the basic modular routines defined by the equations in

the previous section . The weight computing process is developed in reverse

to that of the mission sequence. Starting with the Earth reentry module com-

puted weight, and following through the selection routine in the flow diagram

of Figure 15, each required module is added in turn, and this accumulated

total is treated as payload to the next stage for sizing the propulsion systems.

The configuration weight in-Earth-orbit is finally determined when the Earth

orbit escape stage is computed and added to the previously accumulated total.

Vehicle weights can be derived for various planetary mission modes,

including direct lander, direct orbiter, outbound swingby lander or orbiter,

inbound swingby lander or orbiter, and planet flyby. The capability of per-

forming parametric weight sensitivities is inherent in the program by

varying one or more parameters while holding all others constant.
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WEIGHT SYNTHESIS PARAMETRIC ANALYSIS

Generalized weight synthesis data were generated for the Earth Reentry

Module (ERM), Mission Module (MM), Planetary Excursion Modules (PEM),

Propulsion Modules (PM), and the aerobraker spacecraft. The data are

presented in parametric form, which permits the rapid determination of the

approximate mass requirements of the individual modules and the mass on

earth orbit. The mass requirements for the individual modules, which are

presented in this section, do not include the effects of environmental consid-

erations (thermal insulation, meteoroid protection, and radiation protection)

since the environmental effects depend upon the mission objective and, to a

lesser extent, the mission opportunity. The effects of environmental consid-

erations are included in a subsequent section (Mission/System Design) where

the total system mass requirements are determined for specific missions.

The aerobraker mass data, however, include nominal environments.

EARTH REENTRY MODULE

The ERM mass depends upon the module shape, crew size, and earth

reentry speed. The mass requirements for the Apollo, biconic, and conic

ERM's are presented in Figures 16 through 18 for crew sizes from 4 to

20 men and for the range of reentry speeds applicable to the study. A com-

parison of the three ERM's is shown in Figure 19 for a crew size of eight

men. Below a reentry speed of approximately 14.2 km/s, the Apollo shape
is the most advantageous on the basis of mass alone. Between 14.2 and

17.5 km/s the biconic shape is the lightest; above 17.5 km/s the conic shape

is the lightest. By comparing Figure 16 through 18, it can be seen that the

reentry speeds at which the mass requirements intersect are approximately
the same for all crew sizes.

The reentry speeds are less than 14.7 km/s for all mission objectives

except Mercury and Ceres provided the Venus swingby mode is used for the

Mars missions. For the majority of the missions being considered, the

Apollo shape imposes the lowest ERM mass requirements. The reentry

speeds for Mercury missions are between 14.5 and 17.5 km/s and, in general,

the biconic configuration imposes the lowest mass requirements. The reentry

speeds can be reduced to less than 12.4 km/s for the Mercury missions if

the Venus swingby mode is used during earth return. These missions, how-

ever, impose higher total incremental velocity requirements than the

minimum-energy direct missions during the same year. The biconic shape

results in a mass savings of approximately 11.5 percent (900 kilograms)

when compared with the Apollo shape for the highest Mercury reentry speed
considered for the direct missions.
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MISSION MODU LE

The MM mass depends upon the spacecraft crew size, mission duration,

free volume per man, number of floors, and subsystem types. The effects

of the first four parameters on the mass requirements are shown in Fig-

ures 20 through Z4, assuming an environmental control and life support

subsystem with water and oxygen recovery and an isotope mercury Rankine

electrical power subsystem. Of the parameters shown, the crew size and

mission duration have the most significant effect on the module mass, and
the number of floors the least effect. For a free volume of 750 cubic feet

per man, a Z0-man crew, and a mission duration of 1500 days, the mission

module mass is increased by approximately one percent (800 kilograms) if
the number of floors is decreased from four to three.

The effects of free volume per man (from 400 to 1200 cubic feet per

man) varies from seven percent to seventeen percent. The lower variation

corresponds to a crew size of twenty men and a mission duration of 1500 days,

while the upper variation corresponds to a crew of four men and a duration

of 300 days. For all mission objectives except Jupiter/Ganymede, the

mission durations are less than 800 days. For a nominal crew size of

eight men and a mission duration of 700 days, the module mass increases

from 22,730 to 25, 575 kilograms (1Z. 5 percent) for the same variation in
the free volume. For a nominal free volume of 750 cubic feet, the module

mass is 24, 070 kilograms.

Of the mission module subsystems considered in detail, the type of

environmental control and life support subsystem has the predominant effect

on the module. The scaling equations defining the open, water recovery,

and water and oxygen recovery systems are

WOPEN=408 + 330Nc

\R c/

o>
whe re

+ 0.09 t + 1I. 317 Nct + WLCS; kg

= 468 + 367 N C + 0.09 t + I. 981 Nct + WLCS; kg

= 471 + 3Z3 N C + 0.09 t + 0.997 Nct + WLC S; kg

N c = crew size

t = mission duration; days

WLC S = cabin repressurization mass, kg.
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The resultant effects of the life support system mass on the module

mass on Earth orbit are

WOPEN - W(H20 _

\REC/

WOPEN w{H2o +02
\REc/

w('H2o - w/H2o +o2
,,REC/ \REC/

= - 60 - 37 N C + 9. 336 Nct; kg

= - 63 + 7 N C + I0.320 Nct; kg

= - 3 + 44 N C + 0.984 Nct; kg

The above mass differences do not include the effects of the change in

structural mass due to the change in volume or the electrical power mass

changes. These effects are small, however, when compared with the differ-

ences due to the basic systems. The severe penalty imposed by the open

system can be seen by considering the Mercury missions, which have the

shortest mission durations (300-400 days). The open system is Z5,600 kilo-

grams heavier than the system with water and oxygen recovery for a mission

duration of 300 days and a crew size of eight men. This is an increase of

more than 100 percent in the module mass. The system with water recovery

only would be about I0 percent (Z, 690 kilograms) heavier than the system with

both water and oxygen recovery. The effect of trip time is also significant.

For a 1400 day mission, a water recovery system wouldbe about 34 percent

heavier than the more fully closed system compared to only a 10 percent

increase for a 300 day mission.

PLANETARY EXCURSION MODULE

The mass requirements for manned PEM's were investigated param-

etrically for all mission objectives except Venus. Results are presented in

Figures 25 through 30 as a function of crew size and occupancy time. In all

cases, including Mars, a propulsive landing mode is assumed. The mass

requirements of both the ascent and descent stages are based on a specific

impulse of 387 seconds and a propellant bulk density of 1233 kg/m 3

(77.0 lb/ft3). Two configurations, the Apollo and the Aeronutronic shapes,

were considered for the Mars excursion modules. The Apollo shape (Fig-

ure Z6) is from Z1 to Z7 percent lighter than the Aeronutronic shape.

The data presented in Figures 25 through 30 are for circular planetary

parking orbits at the altitudes indicated on the figures and do not include the

environmental protection requirements. The effects of planetary parking

orbit eccentricity and environmental considerations are included in the data

presented in the Mission/System Design section.
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PROPU LSION MODU LE

The propulsion module mass requirements were determined as a

function of the characteristic velocity and payload mass for chemical (earth

storable and cryogenic), solid-core nuclear, and gaseous-core nuclear

stages. The mass data presented include the basic structure, engine, pro-

pellant, and interstage; the incremental mass requirements for thermal and

meteoroid protection are excluded. The effects of thermal and meteoroid

protection requirements are included in the data presented in the Mission/

System Design section.

The effects of variations in the basic structural mass, the specific

impulse, and the gaseous-core nuclear engine thrust-to-weight ratio were

evaluated. The nominal structure is based on the assumed post-1980 tech-

nology represented by a 50-percent reduction in the required structural mass

relative to currently developed stages. The effects of utilizing the current

technology and an even more advanced structure 75-percent reduction relative

to current technology are shown.

The mass of the chemical modules is presented in Figures 31 through

41 for specific impulse values of 387 and 450 seconds. The lower value is

representative of storable propellants, while the upper value represents the

expected specific impulse for cryogenic systems during the post-1980 era.

The nuclear solid-core data are presented in Figures 42 through 49 for

specific impulse values of 800, 820, and 900 seconds. A value of 820 seconds

was assumed as the nominal value in all systems synthesis analyses. Specific

impulse values of 2,000, Z, 500, and 3,000 seconds were considered for the

gaseous-core nuclear engines. Results are presented in Figures 50 through

57. A specific impulse of 2,500 seconds and an engine thrust-to-weight ratio
of 8 were assumed as the nominal values,

The data presented in Figures 31 through 57 include the gravity losses

associated with escape from Earth orbit at an initial parking orbit altitude of

300 kilometers. Although the gravity losses will vary with central body, the

effects are not critical and the data are applicable with minor errors for all

target bodies considered in the study.

AEROBRAKER

Results of the aerobraker syntheses (Figures 58 through 63) define the

mass requirements as a function of the crew size and planetary orbit escape

incremental velocity for orbital and landing missions. The Apollo shape was

assumed for the earth reentry module in all cases but both the Apollo and

Aeronutronic shapes were considered for the Mars excursion module (MEM).

Figures 58, 59, and 60 are based on a planetary orbit escape propulsion

module specific impulse of 387 seconds. Figures 61 through 63 are based on
450 seconds.
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The aerobraker mass includes the earth reentry module, mission

module, trans-Earth midcourse correction stage, planetary orbit escape

propulsion module, Mars excursion module, orbit circularization propulsion

module, trans-Mars midcourse correction stage, and the aerobraker shroud.

The trans-Mars and transearth midcourse correction incremental velocities

were assumed to be 60 m/s. An additional 305 m/s was provided to circular-

ize the elliptical parking orbit which results from the aerobraking maneuver.

For the landing missions, the planetary stay time is 28 days, and the MEM

crew size is half to total crew. All data are based on an earth reentry speed

of 15.0 knn/s and a Mars entry speed of 12.0 krn/s.

The aerobraker data presented are based on the weight scaling equations

presented in the Weight Scaling Equations section.

- 129 -

SD 67-621-5



_,, _©_ ?_L_D"

..._ _I,,.- ,-- .._

MISSION/SYSTEM DESIGN

The requirements of all of the missions which might be considered in

any future manned planetary exploration program must be evaluated simul-

taneously to ensure an efficient over-all program. The establishment of the

design requirements for modules for the nearer-term missions must include

an evaluation of the requirements of the more advanced missions, Such an

approach will ensure the maximum utilization of all modules developed, and

an efficient expenditure of national resources for manned planetary

explo ration.

The characteristics of the individual modules and subsystems have been

presented in parametric form in the previous sections of this Appendix and in

Appendix C. These data, although useful in defining the subsystem and mod-

ule characteristics as a function of the design parameters, do' not conveniently

define the total system mass requirements for the diverse mission objectives

and mission opportunities which have been considered. The total system

mass requirements are established in the following sections for representa-

tive mission opportunities for each of the mission objectives. The mass

requirements of the manned modules and propulsion modules are then

examined and potential common modules established. Finally, some of the

penalties and advantages associated with the use of the common modules are

evaluated.

It has been determined that it is feasible and, in some cases, advan-

tageous to use common modules for a select family of missions. The pen-

alties in mass in Earth orbit are dependent upon the mission objective,

mission opportunity, and the criteria used to select common modules.

Advantages include the use of a propulsion module which is designed by a

mission which has high incremental velocity requirements to decrease the

mission duration, increase the planetary stay time, or increase the payload

for a mission which has lesser nominal requirements. However, a mass

penalty would still exist since the distribution of the incremental velocity

requirements would, in general, be such that one or more of the propulsion

modules in the total system would be off-loaded in propellant.

STUDY APPROACH

The initial analyses of the mass requirements were based on the per-

formance requirements for circular planetary parking orbits. The circular

orbit restriction was imposed at the onset of this study because itwas felt

that elliptical orbits would inordinately complicate rendezvous operations and
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significantly increase launch window requirements. Analyses conducted after

the initiation of this study, however, have shown that only modest performance

penalties are incurred for performing off-pericenter planetary orbit insertion

and escape maneuvers. Maneuvers carried out as much as 60 degrees in true

anomaly from pericenter can result in increases in the incremental velocity

requirements of only about 7 percent. These penalties are much less than

the velocity reductions inherent in the use of elliptical orbits. 1

The effects of using elliptical planetary parking orbits on the propulsion

module mass requirements were considered for Mercury, Venus, Mars,

Jupiter and Ganymede under an amendment to the basic contract. Elliptical

orbits were not considered for Ceres and Vesta since the use of such orbits

would not result in significant performance advantageous due to the small

mass of the asteroids.

The total system requirements were first established assuming the

individual modules, and thus the total system, were designed by the particular

mission requirements, e.g., incremental velocity, payload, mission dura-

tion, Earth reentry speed, crew size, environment, etc. These data pro-

vided the basic information required to select common modules and to

evaluate the penalties and/or advantages associated with the use of common

modules.

The initial examinations of common modules were based on the utiliza-

tion of a common Earth reentry module (ERM) and a common mission module

(MM). The modules which were selected satisfied the requirements of the

majority of the missions. The selection of a common ERMwas based on the

Earth reentry speed for the majority of the missions considered in the study.

The selection included the elimination of some mission objectives, mission

opportunities, and mission modes due to excessive requirements which would

unduly penalize the majority of the missions. The selection of a common

mission module was based on the longest mission duration and consumables

were off-loaded as required for missions of shorter duration. The investi-

gations of the effects of using a common ERM and MM were performed by

determining the total system mass assuming the propulsion modules and the

environmental protection requirements of all modules were sized by the

particular mission. In this manner it was possible to determine the effects

of the common manned modules on the mass requirements of the propulsion

modules and the mass in Earth orbit.

1
The velocity reductions which can be achieved using elliptical planetary parking orbits are presented in

Appendix A.
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The investigations of common propulsion modules were performed

using fixed module characteristics (structure and engines) and off-loading

propellant as required by the particular mission and propulsion module pay-

load. During the analyses of common propulsion modules, the manned mod-

ules and the environmental protection requirements of all modules were

sized by the mission.

The investigations of common propulsion modules were based on mass

requirements only. Many other factors will also effect the selection of future

propulsion modules --for example, the development cost and development

time. Other factors which must be included in the ultimate selection of

future propulsion modules are the operational considerations. These include

the compatibility of the propulsion modules with the launch vehicle(s), the

compatibility of the launch vehicle(s) with the launch site facilities, the num-

ber and frequency of launches, in-orbit assembly time, more precise defi-

nition of the manned module weights and scientific mission objectives insofar

as they influence spacecraft weight.

The final investigations of the use of common modules were based on

the use of both common manned modules and cornrnon propulsion modules.

These analyses were conducted only in the case of circular planetary parking

orbits.

Only the Venus swingby mission mode was considered for Mars missions

during the mission/system design analyses. The Venus swingby missions

have, in general, lower total incremental velocity requirements, lower

Earth reentry speeds and reduced velocity sensitivity to launch delays com-

pared to the direct mission.

CIRCULAR PLANETARY PARKING ORBITS

Operational considerations could be imposed which would limit the

planetary parking orbits to circular orbits. Since circular orbits could con-

ceivably be required, the analyses of such orbits are presented separately.

During the subsequent discussions of elliptical planetary parking orbits,

circular orbits are again considered but only in the context of elliptical

orbits of zero eccentricity.

Optimized Manned Modules

The basic mass requirements of the manned modules (Earth reentry

module, mission module, and planetary excursion module) were presented in

parametric form in the Weight Synthesis Parametric Analysis section of this

Appendix. The additional mass requirementsXor meteoroid protection, ther-

mal insulation and radiation protection must be added to the basic module

mass in order to define the total mass for a given mission. The resultant
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mass (measured at the beginning of the mission) of the Earth reentry module,

mission module, and trans-Earth midcourse correction propulsion module

are shown in Figure 64 for representative mission opportunities for crew

sizes of eight and twenty men. The data are based on a low L/D (Apollo)

Earth reentry module and a mission module with a partially regenerative

environmental control and life support subsystem (water and oxygen recovery)

and an isotope/mercury Rankine electrical power subsystem. A nominal

mission module free volume per man of 750 ft3/man was used and the

number of floors were varied with crew size in order to maintain a module

diameter of 10 meters or less. (It has been shown in the previous section -

Weight Synthesis Parametric Analysis - that the number of floors has a

negligible effect on the module mass.) The trans-Earth midcourse correction

propulsion module mass requirements are based on an incremental velocity

of 60 meters per second per mission leg, a specific impulse of 387 seconds,

and a stage mass fraction of 0.85. A constant stage mass fraction was

assumed for the trans-Earth midcourse propulsion module since the module

sizes were outside the range of applicability of the stage weight scaling

equation defined in the Weight Scaling Equations section of this Appendix.

Inordinately high values would have been obtained had the scaling equations

been employed.

The effects of the mission opportunity on the mass requirements for

radiation protection can be seen by comparing the requirements for the 1988

and 1992 Mercury missions. The 1988 mission occurs when the projected

solar activity will be a minimum, and the 1992 mission occurs when the

activity is expected to be a maximum. The mass differences due to radiation

shielding requirements alone are approximately 7,000 kg for an eight-man

crew, and II, 000 kg for a twenty-man crew. The remaining differences are

due to the slightly higher Earth reentry speed (15.59 km/sec versus

15.02 km/sec) and longer mission duration (364 days versus 311 days) for the

1992 mission.

The mass requirements of the planetary excursion modules are pre-

sented in Figures 65 through 67. The data include the mass of the interstage

which houses and provides meteoroid protection of the PEM during the trans-

planet mission phase. The data are based on the use of storable propellants

with a specific impulse of 387 seconds and a bulk density of lZ33 kg/m 3

(77 lb/ft3). The palnetary parking orbit altitude at which the descent maneu-

ver is initiated and the ascent maneuver is terminated is one planetary radius

in all cases except Mars. The Mars parking orbit altitude was assumed to

be 800 kin.

Environmental and performance considerations precluded extensive

analyses of manned landings on Venus and Jupiter. A brief investigation of

the mass requirements of a Venus excursion module (Configuration Design

section) resulted in an estimated minimum module mass in excess of
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Figure 65. Planetary Excursion Module Mass {Mercury and Ganymede}
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363, 000 kilograms. This was considered to be excessive and was not investi-

gated during the mission/system design analyses. The effects of the payload

mass which is landed (or left in orbit about the planet) were investigated for

both Venus and Jupiter by using arbitrary probe masses of I0,000 and

50,000 kg during the system weight synthesis analyses.

Optimized Propulsion Modules

The major propulsion modules for retrobraker missions are the Earth

orbit escape module (EOE), planetary orbit insertion module (POI), and plane-

tary orbit escape module {POE). The mass requirements of the individual

modules which are sized by the payload, incremental velocity requirement,

and central body are discussed in this section.

The results which are presented in this section are based on the use of

an Apollo type ERM and a MM with a partially closed (water and oxygen

recovery) EC/LSS and an isotope/mercury Rankine EPS. The PEM mass

requirements are based on the use of storable propellants with a specific

impulse of 387 seconds and a bulk density of 1233 kg/m 3. In all cases, the

PEM crew size is assumed to be half the total crew size, i.e., half the size

of the crew size used in the determination of the ERM and MM mass.

The total propulsion module mass consists of the basic shell (tankage,

accessories, etc.), engine, propellant (including boil-off propellant),

meteoroid protection, insulation, and interstage structure. The engine

thrust (and thus mass) was determined by optimizing the initial thrust-to-

weight ratio. Engine burn time limits of 600 and 1200 seconds were assumed

for chemical and nuclear engines, respectively. If the thrust-to-weight ratio

would nominally be optimum with a burn time in excess of the above limits,

the thrust corresponding to the maximum burn time was used to determine the

engine mass. 1 The insulation and boil-off propellant requirements were

optimized for each module by minimizing the total system mass in Earth

orbit (see Appendix B). The meteoroid protection requirements were

determined for each mission objective and it was assumed that the protection

was provided by a separate structure. The meteoroid protection shroud and

the interstage were jettisoned prior to ignition.

Chemical Propulsion Modules

The examinations of the chemical propulsion module mass requirements

were limited, in general, to Mars and Venus missions. The mass require-

ments for representative Mars and Venus mission opportunities are shown in

1A brief investigation of the effects of the burn time constraints showed that the assumed limits did not unduly

penalize the total system mass. The thrust-to-weight ratio had either been minimized prior to reaching the

burn time constraint or was near the minimum at the limiting values.
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Figure 68 for crew sizes of eight and twenty men. A limited investigation has

shown that the mass requirements for intermediate crew sizes can be esti-

mated quite accurately by linear interpolation. The data are based on a

specific impulse of 450 seconds for all propulsion modules. As can be seen

from the figure, the propulsion module mass requirements are continuous
when variations in crew size are considered.

Solid Core Nuclear Propulsion Modules

The mass requirements of solid core nuclear propulsion modules are

shown in Figure 69 for representative mission opportunities for all mission

objectives. The mission opportunities which were considered during this

analysis are summarized in Table 14. The detailed characteristics of the

missions can be obtained from Tables through of Appendix A. All of the

results presented in Figure 69 are based on a specific impulse of 820 seconds.

Included in the data, however, are the nuclear Earth orbit escape propulsion

module mass requirements for Mars and Venus retrobraker missions and

Mars aerobraker missions using cryogenic upper stages.

Certain similarities in the propulsion module mass requirements can

be observed from Figure 69. The planetary orbit insertion requirements for

Vesta and Ganymede missions are comparable to the nuclear propulsion mod-

ules required for planetary orbit escape for Mars and Venus missions. The

planetary orbit insertion requirements for Mercury and Ceres missions are

comparable to the requirements for either the planetary orbit insertion or the

Earth orbit escape maneuver for Mars and Venus missions, depending upon

the mission opportunity considered. Vesta planetary orbit insertion require-

ments are similar to the Mars and Venus Earth orbit escape requirements

using nuclear upper stages while Ganymede and the low energy Mercury and

Ceres missions have requirements similar to the Earth orbit escape require-

ments for Mars and Venus missions which use cryogenic upper stages.

The Earth orbit escape propulsion module mass requirements for the

baseline Vesta, Ceres, and Jupiter flyby missions are shown in Table 15.

Also shown in the table are the mass requirements of the manned modules

(Earth reentry module and mission module at the time of Earth orbit escape)

and the mass in Earth orbit requirements. The effects of mission opportunity

on the mass requirements are most significant for the Ceres missions and the

least significant for the Jupiter missions. The large variations in the require-

ments for the Ceres missions are due to the high inclination and high eccen-

tricity of the orbit of Ceres. The Earth orbit escape propulsion module mass

requirements are comparable to the requirements for circular planetary

orbit insertion and escape for the Mars and Venus missions even if the worst

Ceres missions are considered.
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Table 14. Mission Opportunities for Solid Core Nuclear Propulsion

Module Mass Requirements Analyses

!

Mission Objective Mission Mode Mission Years Considered

Me r cury

Venus

Mars

Direct

Direct

Venus Swingby

1988, 1990, 1992

1988

1986, 1988, 1995, 1999

Vesta

Ceres

Ganymede

Direct

Direct

Direct

1985, 1987

1980, 1991

1990

Table 15. Flyby Mass Requirements (Eight-Man Crew)

Objective

Vesta

Vesta

Ceres

Ceres
i

Jupiter

Jupiter

Year

1991

1993

1993

1992

1991

1985

Manned Module s

(kg)

30,700

35,700

35,500

36,700

42,200

36,200

Earth-Orbit

Escape Stage

(kg)

57, 200

105,500

79,600

198, I00

137,600

134, i00

Mass on

Earth Orbit

(kg)

94,300

147,800

121,600

241,400

186,600

176,900

A brief investigation was conducted to determine the effects of the

mission profile and the meteoroid environment on the incremental velocity

requirements and the mass requirements for missions to Ganymede. The

nominal mission profile consists of a single plane transfer from Earth to

Jupiter/Ganymede and from Jupiter/Ganymede to Earth. The alternate mis-

sion profile consists of a two-plane transfer for each mission phase such that

the heliocentric conic is approximately 0.5 AU out of the plane of the ecliptic

at the radius of the center of the asteroid belt (2.8 AU). The two plane
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transfer consists of an initial heliocentric conic which is in or near the plane

of the orbit of the departure planet about the Sun. Since this trajectory will

not, in general, result in a rendezvous with the target planet, a second

maneuver is required. The second maneuver consists of a pure plane change

maneuver which results in a second heliocentric conic which is designed to

avoid passage through the asteroid belt. The resultant incremental velocity
requirements and the mass requirements are shown in Table 16. It can be

seen from the table that the mass in Earth orbit requirements associated with

the out-of-the ecliptic mission profile are only 9 percent greater than the

requirements for the nominal profile with a nominal meteoroid environment.

Although the incremental velocity requirements are higher, meteoroid pro-

tection is required only for the cometary flux resulting in lower shielding

requirements for all modules (manned and propulsive). If the maximum

environment is considered with the nominal (single plane transfer) mission

profile, additional shielding is required for all modules which increases the

mass in Earth orbit by a factor of 3. 14.

The relatively small increase in the mass in Earth orbit requirements

associated with the out-of-the ecliptic profile and the uncertainty in the aster-

oidal environment make the out-of-the ecliptic mission mode particularly

attractive. On the basis of the limited analyses conducted during this study,

it appears that this mission mode should be given serious consideration

during the definition of the mission/system requirements for all (manned and

unmanned) missions to Jupiter.

Gaseous Core Nuclear Propulsion Modules

The propulsion module mass requirements for Mercury, Vesta, Ceres

and Ganymede missions using gaseous core nuclear propulsion modules are

shown in Figure 70. The data are based on a specific impulse fo 2500 sec-

onds and an engine thrust-to-weight ratio of eight. The upper bar represents

the effects of varying the crew size from eight to twenty men. By comparing

Figures 69 and 70, it can be seen that the gaseous core nuclear propulsion

module mass requirements are approximately an order of magnitude less

than the requirements for solid core modules.

Although Mars and Venus missions were not considered during the

analyses of the gaseous core propulsion module mass requirements, it is

appropriate to determine the effects of using modules designed by the

advanced missions for the nearer-term missions. Modules designed by the

requirements of the advanced missions could be used to either reduce the

mission duration or increase the payload for Mars and Venus missions.

The effects of using the propulsion modules designed by the 1990 Jupiter

mission to perform the 1995 Mars mission are shown in Table 17. The

table shows the reduction in the trip time and mass in Earth orbit which

can be achieved. The results are based on minimizing the total trip time
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by maximizing the utilization of the fixed propulsion modules. Since the

modules are not designed by the requirements of the Mars mission, the

total capability of all propulsion modules can not be used. For the mission

opportunity examined, only the planetary orbit insertion stage is fully loaded.

Both the planetary orbit escape and the Earth orbit escape modules were off-

loaded in propellant.

Common Manned Modules

Earth Reentry Module

An examination of the Earth reentry speeds presented in the Mission

Requirements Section of Appendix A shows tha% the reentry speeds are gen-

erally less than 15 km/sec. The major exceptions are the Ceres and

Table 16. Jupiter Out-Of-The Ecliptic Mission (Ganymede 1990 Mission}

Missile Profile

Nominal

Out- of- the - e clipti c

Nominal

Meteoroid

Environment

Nominal

Nominal

Maximum

Manned Modules

(kg)

34, 600

32, 910

63,370

Total AV

(km/s)

17. 54

18. 75

17. 54

Mass on Earth

Oribt (kg)

I, 95 I, 806

2, 120,258

6, 119,961

Table 17. Mars Mission Using Gaseous Core Nuclear

Propulsion Modules

Propulsion System

C ryog enic

Nuclear Gaseous

Core

Trip Time

Trans-Mars

180

130

Trans -Earth

260

195

Miss ion

Duration

470

355

Mass in

Earth Orbit

(kg}

1,215,000

213,000
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Mercury missions and the direct Mars missions. The Earth reentry speeds

for the Ceres missions can be reduced by increasing the incremental velocity

requirements. The high reentry speeds associated with the direct Mars

missions can be avoided by considering only the Venus swingby mission

mode which is also the likely mission mode when propulsive requirements
are considered.

The Earth reentry module mass requirements were shown in Figure 19

of the Weight Synthesis Parametric Analysis section of this Appendix for a

crew size of eight men. As can be seen from the figure, the Apollo config-

uration is the lightest for reentry speeds below 14.2 kilometers per second.

In the area between 14.2 and 17. 5 kilometers per second the biconic is the

lightest; and above 17.5 kilometers per second, the conic is the lightest.

From the standpoint of mass considerations, the development of a conic con-

figuration would not be required if the alternate class Ceres missions and

only the Venus swingby Mars missions are considered.

The reentry speeds for Mercury missions can be limited to less than

16.0 km/s by limiting the mission opportunities which are considered.

Limiting the missions to those opportunities which have the lower reentry

speeds is also compatible with the elimination of mission opportunities on the

basis of excessive performance requirements. For the remaining mission

objectives (Venus, Mars missions with Venus swingby, Vesta, and Jupiter/

Ganymede) the reentry speeds are less than 15 km/s. Between 14. 2 km/s

and 15.0 kin/s, the biconic configuration hasaslightmass advantage. In

terms of the total mass of the manned vehicles, the mass advantage of

approximately 200 kg represents less than one percent of the total mass of

the transearth spacecraft. It is therefore concluded that, on the basis of the

parameters which have been considered in the present study, the low L/D

(Apollo) configuration will be adequate for future manned planetary missions.

Other considerations which may make the development of a second config-
uration desirable, e.g. abort, have not been considered.

Mission Module

The mission module mass is primarily dependent upon the crew size,

mission duration, and the types of subsystems assumed. Common mission

modules could be achieved by two methods. First, the mission modules can

be developed in a modular manner in which the number of floors in the

module are increased as the crew size is increased. As an example, a single

module could be developed which could be used for crew sizes from eight to
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twelve men, with the consumables added, as required, for the mission dura-

tion. As the crew size increases, another floor could be added and the addi-

tional consumables provided.

An alternate approach would be to develop a single module which is

designed for a given mission duration and crew size and to then off-load crew

and consumable as required for missions which impose lesser requirements.

The missions which have the longest duration and those which impose the

maximum requirements in terms of consumables are the Jupiter/Ganymede

missions. The mission duration for these missions are slightly over

1400 days.

Regardless of which approach is used, it is assumed that the meteroid

and radiation protection would be sized for the particular mission. This

assumption is reasonable since the environmental protection requirements

would probably consist of an incremental structure which is added to the basic

structure and could be conveniently sized for a given mission objective and

mis sion opportunity.

Planetary Excur s ion Module s

The only feasible areas for designing common planetary excursion

modules would be among the retrobraking PEM's. For a given crew size, the

only differences in the ascent stages of the planetary excursion modules would

be in the amount of propellant provided for ascent and in the ascent stage

engine thrust. The environmental protection requirements (thermal) would be

designed for the given mission objective. Thus, a common ascent stage

could be developed which provides the basic structure and equipment for the

crew, but which has different propellant tanks and engines for a given mission

objective. As an alternative, common propellant tanks could be used and off-

loaded as required.

The descent stages fall into two basic categories: A relatively large

module for landings on Mercury and Ganymede, and a relative small module

for landings on Ceres and Vesta. As can be seen from Figure 65, the mass

of the Mercury module is approximately twice the mass of the Ganymede

module. The mass differences in the ascent stages are 4000 kilograms; the

differences in the descent stage requirements are lZ000 kilograms. The dif-

ferences in the mass requirements are due to the differences in character-

istic velocity requirements and thus propellant requirements. Thus, two

common descent stages could be developed which are sized on the basis of the

requirements for the Mercury and Ceres missions.
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Effects of Common Manned Modules

The effects of using manned modules which were sized by the require-

ments of the limiting missions were evaluated assuming a crew size of eight

men. The earth reentry module requirements were dictated by the 1992

Mercury mission which has a reentry speed of 15.59 km/s. The Mission

Module was sized by the Jupiter/Ganymede missions based on a mission

duration of 1416 days.

The effects on propulsion module mass requirements of using manned

modules which were designed for the eight-man crew but off-loaded in con-

sumables as dictated by the mission requirements are shown in Figure 71.

The lower bars represent the basic requirements, while the upper bars repre-

sent the penalties for using fixed manned modules. The effect of oversizing

the earth reentry module can be seen by the relatively small increase in the

propulsion module mass requirements for the Ganymede missions. The

maximum effects of an oversized mission module can be seen by referring to

the penal£ies for the 1992 Mercury mission.

Common Propulsion Modules

The determination of the future propulsion module requirements must

be evaluated in the same manner as the manned modules requirements were

evaluated in the previous section. Some of the basic questions which must be

answered are: (1) can propulsion modules be developed for the nearer-term

missions which are compatible with the requirements of the advanced mis-

sions; (2) can modules be developed which permit flexibility in the mission/

system selection; and (3) what are the penalties and advantages which may

result from the development of common modules ?

The results which are presented in this section are based on the use of

manned modules which are sized by the particular mission "requirements.

The characteristics of the manned modules are the same as those used during

the investigations of the optimized propulsion modules.

Chemical Propulsion Modules

The examinations of conamon chemical propulsion modules were limited
to the establishment of potential common modules which could be used to

satisfy the requirements of all maneuvers for the majority of the missions.

The evaluations were performed on the basis of an eight man crew under the

assumption that larger crew sizes could be used during missions which have

more modest performance requirements.

By referring to Figure 68, it can be seen that the planetary orbit escape

propulsion module mass requirements are less than 100,000 kg for the limiting
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mission opportunities considered. If such a module were developed, the

same module could be used in pairs to accomplish the planetary orbit inser-

tion maneuver. This module could not be used for Earth orbit escape, how-

ever, without excessive clustering.

A second module would have to be developed to accomplish the Earth

orbit escape maneuver This module could be on the order of 500,000 kg and

would be used either singularly, in pairs, or in combination with the

i00,000 kg module to accomplish the Earth orbit escape maneuver for all

missions considered. An alternative would be to develop either a 300,000 kg

module or a 600,00 kg module. The 600,000 kg module could be used singu-

larly to accomplish the Earth orbit escape maneuver for all missions except

the more difficult Mars missions and the Venus missions with the larger

probe mass (50,000 kg). The 300,000 kg module could never be used singu-

larly but it would provide more flexilibility in crew size and/or probe mass.

Of the modules considered, the I00,000 kg and 300,000 kg modules

appear to be the most attractive combination. If such an approach were

adopted, there would be no commonality between the Earth orbit escape module

and the modules required for the remaining mission maneuvers. Therefore,

a storable module could be developed for the planetary orbit insertion and

escape maneuvers without impacting the module commonality.

Nuclear Propulsion Modules

Extensive analyses were conducted to establish common nuclear pro-

pulsion modules since they are the only high-thrust modules which can be

sensibly applied to the entire spectrum of missions considered. The analyses

were limited to the examination of common solid core propulsion modules

since their application is considered to be more appropriate for all missions.

It has been shown in Figure 69 that the propulsion module mass require-

ments are essentially continuous if all mission opportunities to all mission

objectives are considered. In an attempt to produce discrete bands of pro-

pulsion module requiren_ents, the number of mission opportunities which were

considered were limited. The effects of limiting the mission opportunities

for the more difficult missions (i.e., Mercury, Vesta, and Ceres) are shown

in Figure 72. The lower bar corresponds to a crew size of 8 men; the upper

bar corresponds to a crew size of 20 then. All mission opportunities for

these nlission objectives have been eliminated from consideration except those

for which arrival at the target body occurs near the line of nodes. This

restriction yields missions of lowest energy requirements. Also, the Mars

and Venus missions with chen_ical upper stages are not shown in this figure.

It can be seen that the propulsion module mass requirements are still con-

tinuous if crew sizes up to twenty men are considered. By limiting the crew

size to eight men, a limited number of discrete bands can be obtained. As
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can be seen from the figure, the mass requirements remain continuous up to

approximately 600, 000 kg even with the smaller crew size. This continuum

includes all propulsion modules except the Earth orbit escape modules for

the Mercury, Ceres and Ganymede missions. A lower continuum {mass

< 350,000 kg) exists which includes all propulsion modules up through the

Earth orbit escape modules for the Mars, Venus, and Vesta missions.

Included in the lower continuum are the planetary orbit insertion modules for

the remaining Mercury lander missions and the Ganymede orbiter and lander

missions. A second band of requirements exists between 1.0 and 1. 2 Inillion

kilograms. Modules within this band would be required for Earth orbit

escape for Ceres and Ganymede orbiter and lander missions and Mercury

orbiter missions with an eight man crew.

The feasibility of selecting discrete propulsion modules within the lower

band of requirements was investigated in detail assuming only two propulsion

module sizes were to be developed. During the initial investigations a

100,000 kg module was assumed which could be used for planetary orbit

escape for all mission objectives except Mercury and Ceres. The same mod-

ule could be used either singularly or in multiples for planetary orbit insertion

for Mars and Venus missions. However, it was found that an excessive

penalty resulted since the module was extremely over-sized for the planetary

orbit escape maneuvers for Mars and Venus missions. To reduce the penalty

the module size was decreased to 75,000 kg. The 75,000 kg module could be

used singularly for planetary orbit escape, and either one or two of the mod-

ules were required for planetary orbit insertion for all Mars and Venus

missions. Two modules were required for planetary orbit escape for

Mercury and Ganymede missions.

Prior to selecting a second propulsion module, the effects of using the

smaller propulsion nlodule on the mass requirements of the remaining mod-

ules were evaluated. After examining the propagation of the mass penalty for

using the smaller module, a second module was selected which had a mass of

300,000 kg. The module could be used either singularly, in pairs, or in com-

bination with the 75,000 kg module to satisfy the propulsion module require-

ments for all remaining maneuvers except the Earth orbit escape requirements

for the Mercury, Ceres and Ganymede missions.

The effects of using the above common propulsion modules are shown in

Figure 73 for an eight man crew. The lower bars represent the requirements

if the modules are sized by the particular mission requirements while the

upper bar represents the requirements which result from the use of the

common modules. The data are based on the use of manned modules which

are sized for the particular mission. The mass requirements which are

shown include the additional requirements for meteoroid and thermal protec-

tion which were sized by the requirements of each mission. Also included is

the mass of the interstage. The discontinuities in the requirements are due
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Manned and Propulsion Modules)
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either to the addition of another propulsion module or due to changing from

the 75, 000 kg module to the 300,000 kg module.

Common Systems

The effects of using both the common manned modules and the common

propulsion modules discussed in the previous sections were investigated for a

limited number of mission opportunities. The resultant propulsion module

mass requirements are shown in Figure 74. The lower bars represent the

requirements if all modules are sized by the mission requirements while the

upper bars represent the requirements resulting from the use of the common

modules.

.4

ELLIPTICAL PLANETARY PARKING ORBITS

Significant incremental velocity savings can be achieved if elliptical

planetary parking orbits are considered. The magnitude of the savings, which

are shown in the Performance Requirements section of Appendix A, are

dependent upon the central body considered. The savings are most significant

for Jupiter missions with low pericenter altitudes and the least significant

for the asteroids. The effects of using elliptical planetary parking orbits

were considered for Mercury, Venus, Mars, Jupiter and Ganymede missions

and the results of the analyses are presented in this section.

The use of elliptical parking orbits will have no effect on the mass

requirements of either the Earth reentry module or the mission module since

they are independent of parking orbit eccentricity. Therefore, the data pre-

sented during the discussions of circular parking orbits are applicable to the

present discussion. The use of such orbits will, however, effect the mass

requirements of both the planetary excursion modules and the propulsion

modules. The planetary excursion module mass requirements will increase

with increasing eccentricity due to increased characteristic velocity require-

ments. The propulsion module mass requirements will decrease due to the

de cr eas ed incremental velocity requirements.

Optimized Manned Modules

The planetary excursion module mass requirements are dependent upon

the eccentricity of the planetary parking orbit since the characteristic velocity

requirements vary with eccentricity. The effects of parking orbit eccentricity

on the mass requirements of the Mercury, Mars, and Ganymede PEM's are

shown in Figures 75 through 77 for crew sizes of four and ten men. The data

include the mass of the interstage and meteoroid protection required during

the transplanet mission phase. The requirements were determined using

storable propellants with a specific impulse of 387 seconds and a bulk density

of lZ33 kg/m 3 (77 lb/ft3). The mass requirements which are presented are
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Isp = 387 sec

Figure 77. Ganymede Planetary Excursion Module Mass
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based on an occupancy time of twenty-eight days for all mission objectives

except Mercury. For Mercury missions, the mass requirements are shown

for occupancy time of 61, 75, and 177 days. The occupancy times are two

days less than the parking orbit stay times for the 1988, 1990 and 1992 mis-

sion opportunities, respectively.

The data presented in Figures 75 through 77 differ from the data pre-

sented in Figures 65 through 67 due to differences in the planetary parking

orbit altitudes. During the investigations of the effects of elliptical parking

orbits, new orbit altitudes were considered resulting in a change in the

ascent and descent stage propellant requirements. The parking orbit alti-

tudes used in the analyses are shown on the figures. The altitude differences

can have sizeable effects on the planetary excursion module mass require-
..

ments, however, the effects on the total mass m Earth orbit are relatively

small.

Optimized Propulsion Modules

During the investigations of the effects of elliptical parking orbits, only

chemical and solid core nuclear propulsion modules were considered. The

mass requirements of propulsion modules which are sized by the particular

mission requirements are presented in the following paragraphs. The data

are based on the use of the same manned module characteristics which were

used during the investigations to the optimized propulsion modules for circular

planetary parking orbits.

Chen_ical Propulsion Modules

The mass requirements of chemical propulsion modules for representa-

tive Mars and Venus mission opportunities are shown in Figures 78 through 80

as a function of the planetary parking orbit eccentricity for crew sizes of eight

and twenty men. As noted previously, the mass requirements for inter-

nlediate crew sizes can be estimated quite accurately by linear interpolation.

The planetary orbit insertion and escape module n_ass requirements are based

on a specific impulse of 387 seconds while the Earth orbit escape requirements

are based on a specific impulse of 450 seconds. Also included in the data are

the Earth orbit escape module mass requirements for representative Mars

aerobraker n_is sions.

The significant effect of the Venus parking orbit eccentricity is quite

apparent. It can be seen from Figure 78 that the planetary orbit escape pro-

pulsion module mass requirements can be decreased by over fifty percent by

increasing the eccentricity from zero (circular orbit) to 0. 7. The planetary

orbit insertion requirements (Figures 78 and 79) can be decreased by over a

factor of four while the Earth orbit escape requirements can be decreased by
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a factor of approximately three (Figure 80). Also of significance for Venus

missions is the comparison between the planetary orbit insertion and plane-

tary orbit escape module mass requirements at the higher eccentricities with

the lower (10,000-kg) probe mass. Although the planetary orbit insertion

module payload is greater, the insertion incremental velocity requirements

are between 55 percent and 75 percent of the planetary orbit escape require-

ments resulting in nearly identical propulsion module mass requirements.

The effects of parking orbit eccentricity on the propulsion module mass

requirements for Mars retrobraker missions are less significant due to the

lower mass of Mars. By increasing the eccentricity from zero to 0.7, the

mass requirements decrease by approximately thirty percent for planetary

orbit escape. For orbiter missions, the decreases in the mass requirement

are forty percent for planetary orbit insertion and twenty-five percent for

Earth orbit escape. The corresponding decreases in the mass requirements

for lander missions are 0 percent for planetary orbit insertion and 0 percent

for planetary orbit escape.

Elliptic planetary parking orbits for Mars aerobraker lander missions

do not produce very significant variations in the Earth orbit escape propulsion

module mass requirements. For those missions which have the lower plane-

tary orbit escape incremental velocity requirements, it is possible to mini-

mize the mass requirements of the Earth orbit escape propulsion module by

varying the parking orbit eccentricity (Figure 79). The optimization is a

result of reduced planetary orbit escape requirements and increased plane-

tary excursion module characteristic velocity requirements as eccentricity is

increased. As the planetary orbit escape incremental velocity requirements

increase, the eccentricity at which the mass requirements are minimized

increases until the minimum mass is obtained at the maximum eccentricity

considered (Figure 80).

The planetary orbit insertion and escape incremental velocity require-

ments for Jupiter orbiter missions with highly eccentric orbits are of the

same magnitude as the requirements for Mars and Venus missions. There-

fore, an investigation was conducted to determine the propulsion module mass

requirements if chemical stages were used for these maneuvers. The

resultant module mass requirements are shown in Table 18. The data are

based on an eight-man crew, a probe mass of I0,000 kg, a Jupiter pericenter

altitude of ten Jupiter radii, a specific impulse of 387 seconds for the plane-

tary orbit insertion and planetary orbit escape propulsion modules, and a

specific impulse of 8Z0 seconds for the earth orbit escape propulsion module.

Even with an eccentricity of only 0.3, the propulsion module mass require-

ments are not excessive when compared with the requirements for planetary

orbit insertion and earth orbit escape for the Mars and Venus missions. For

purposes of comparison, the corresponding mass requirements for an all

nuclear system are also presented in Table 17. By comparing the all nuclear
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Table 18. Chemical Propulsion Mass Requirements (Jupiter Mission)

Earth Orbit

Escape

Planetary Planetary Orbit

Orbit Escape Insertion

I I
sp Mass sp Mass

(sec) (kg) (sec) (kg)

387 363,000 387 2,820, 000

387 179,000 387 798,000

387 76,000 387 183,000

820 169,000 820 642,000

820 98,000 820 256,000

820 51,000 820 89,000

Planetary

Orbit I
sp Mass

Eccentricity (sec) (kg)

0 820 8,848,000

0.3 820 2,866,000

0. 7 820 900,000

0 820 2,386,000

0.3 820 1, 146,000

0. 7 820 564,000

Mass in

Earth Orbit

(kg)

12, 142,000

3,917,000

1,219,000

3,267, 000

1,562,000

762,000

systems with the systems that employ chemical modules at Jupiter, it can be

seen that similar Earth orbit escape propulsion module mass requirements

can be achieved if a higher eccentricity is employed when chemical modules

are used. It will be shown in the next section, however, that the Earth orbit

escape propulsion module mass need not exceed about 1, 100,000 kg with

nuclear upper stages if both Jupiter and Ganymede orbiter missions are con-

sidered. If the same Earth orbit escape module were used with chemical

upper stages, an orbit eccentricity of approximately 0.66 would be required.

This orbit has a period of 23 days for the assumed pericenter altitude. Based

on the results of the limited analyses which were performed, it appears that

the use of chemical propulsion modules for Jupiter planetary orbit insertion

and escape will be limited by operational considerations and the mass of the

earth orbit escape module rather than the mass of the chemical modules.

Solid Core Nuclear Propulsion Modules

The mass requirements of solid core nuclear propulsionmodules are

shown in Figures 81 through 87 for Mercury, Venus, Mars, Jupiter, and

Ganymede missions with eccentric planetary parking orbits. The data are

based on a specific impulse of 820 seconds. Included in the data are the

nuclear Earth orbit escape propulsion module mass requirements for Mars

and Venus missions using storable upper stages. The Earth orbit escape

module mass requirements for Mars aerobraker missions using storable

upper stages are also shown.
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The significance of planetary parking orbit eccentricity on the mass

requirements for Venus missions is again apparent. Of even more signifi-

cance is the effect of eccentricity on the mass requirements for Jupiter

missions. It can be seen from Figures 81 and 85 that, if highly eccentric

orbits about Jupiter are considered, the mass requirements of the planetary

orbit insertion and planetary orbit escape propulsion modules are comparable

to the mass requirements for insertion and escape for Mars and Venus

missions.

Optimized Systems

The mass in Earth orbit requirements for the missions which have been

considered in the previous sections are presented in Figure 88 for chemical

propulsion modules, and Figures 89 through 92 for nuclear propulsion mod-

ules. The significance of elliptical orbits can be seen by comparing the mass

in Earth orbit requirements for the Mars orbiter missions with chemical

upper stages and the same missions with nuclear upper stages. As the

eccentricity increases, the differences in the mass requirements decrease.

Common Manned Modules

During the investigations of the effects of elliptical planetary parking

orbits, additional analyses were performed to determine the effects of using

common manned modules. The Earth reentry module and mission module

design parameters were the same as those used during the circular orbit

analyses with the exception of crew size. For this investigation, it was

assumed that the modules were designed for a crew size of twenty men but

used by eight men. The consumables were provided only as required by the
crew size and mission.

The resultant nuclear propulsion module mass and mass in Earth orbit

requirements are shown in Figures 93 through 97. The mass requirements

are represented by the solid lines while the broken lines show, for purposes

of comparison, the mass requirements using modules which are designed by

the crew size and mission. By referring to Figures 96 and 97, it can be seen

that the mass in Earth orbit penalty for using the over-designed manned

modules is between g0 and 30 percent. It can also be seen that for some

cases, the same propulsion modules which are required for circular orbits

with eight man modules could also be used with the off-loaded Z0 man mod-

ules by using elliptical orbits.

Common Propulsion Modules

Within the constraint of employing circular capture orbits the estab-

lishment of common propulsion modules is relatively straightforward.

Regions of common propulsion module requirements can be defined by

- 181-

SD 67-6ZI-5



c; ...k- ii '!i _

• x_¢ .......... 2.T

.2 '

,_ :! T .....

,, PH :1_

.q

bl

_5

i



!!_ ii!!

_+

_t

_.,_÷

!!i !i!_-

;iii iill

,_!! li!-

x;; ;;::

i

m-
ao

i

I--

o
z

Z

t_

Z

U

I%1

,.o



o

o

g

•_ co |

o

0o" ,

o

d

ci

us.

I--
0

__

Z

5

Z

t,--

P_

o



_o° _

O_ _

t_

J _

_J
_J



a
s

_o_ '

O_

o

W-o
_z

k5
z

%



Figure 93. _ POE Propulsion Module Mass Requirements

(20-Man Module with 8-Man Crew)
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Figure 96. Venus and Mars Mass in Earth Orbit

(Z0-Man Module with 8-Man Crew)
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limiting the mission opportunities and the crew sizes. Regions of common
requirements are not as apparent, however, when elliptical planetary orbits
are considered because of the extreme variations in the propulsion module
mass requirements. By examination of the various propulsion modules mass
requirements shown previously in this section it is possible, however, to
identify several propulsion module sizes that seem appropriate. These sizes
are summarized in Table 19 for each of the propulsion system combinations
considered. To interpret the format of the table consider the NNN system.
The first option is to develop two modules of 75,000 kg and 300,000 kg; the

second option is to develop three modules of 75,000 kg, 300, 000 kg,

I, ZOO, 000 kg; and so forth.

Though the discussion of common propulsion module sizes could termi-

nate with the matrix of Table 19, it seems desirable to place these results in

some prospective. One way of accomplishing this is to contemplate various

criteria which might, at some time in the future, be applied to the module

selection process. At this particular time, of course, the fact that a specific

module size is identified, as in Table 19, is of less importance than the con-

clusion that a module of about that size seems appropriate even if apparently

contradictory criteria were to be imposed. The criteria which were con-

sidered are shown in Table 20. These criteria were not employed explicitly

in the selection of the module sizes although such factors were considered

implicitly simply to reduce the number of module sizes to a reasonable value.

Table 19. Candidate Common Propulsion Modules

Propulsion Module Mass (103 kg)

Propulsion Module Combinations 75 I00 150 300

NNN

NCC

CCC

N N

N N

N

N

C

C

C

C

C

N

N

N

NEOE Aerobraker

N

N

C

N

N/C IZ00

N

N

N

N

N

N

N

C

N/C
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Table 19. Candidate Common Propulsion Modules (Continued)

Propulsion Module Mass (103 kg)

Propulsion Module Combinations 75 100 150

EOE N

Flyby C N

N = nuclear propulsion

C = chemical propulsion (cryogenic or space storable)

F = flyby mission

300 600 1200

Table 20. Propulsion Module Selection Criteria

.

Z.

,

,

5.

Compatible with Saturn V Launch Vehicle

No Impact by an Aerobraker versus Retrobraker Decision (Mars and

Venus only)

Either Chemical or Nuclear Upper (i. e., POE and/or POI) Stages

(Mars and Venus only)

Minimize the Number of Propulsion Modules Developed

Minimize the Number of Propulsion Modules in the Total System

Criterion i.

The maximum payload in Earth orbit of uprated Saturn V launch

vehicles which are currently being considered is approximately 2Z0,000 kg

(480, 000 lbs). This limit was not imposed as a basic study constraint in

order to permit complete freedom in the selection of common modules and

because the mass in Earth orbit is generating so large that an excessive

number of rendezvous would be required. This criterion, by itself, did not
define common propulsion modules, but it did assist in the selection of

common modules when alternatives were available.

Criterion Z

The aerobraker versus retrobraker criterion applies only to the Earth

orbit escape propulsion module for Mars and Venus missions. The objective

of this approach to establishing common module requirements would be to

develop one or more propulsion modules which are compatible with the

requirements of both mission modes. Such an approach would not require a
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decision of which mission mode would ultimately be employed prior to the

development of the Earth orbit escape propulsion module.

The Earth orbit escape propulsion module mass requirements for the

Mars and Venus aerobraker and retrobraker missions which were investigated

varied from 120,000 kg to 380,000 kg for a crew size of eight men and to

600, 000 kg for a crew size of twenty men. The above variations in the mass

requirements are based on the use of nuclear upper stages for the retrobraker

missions. The upper bounds are based on the requirements for circular

orbits. Various alternatives exist for selecting a common propulsion mod-

ule which will satisfy the earth orbit escape requirements of both the aero-

braker and the retrobraker missions. A 600, 000-kg module could be

developed which would satisfy the requirements of all Mars and Venus

missions for all crew sizes. This same module would satisfy the planetary

orbit insertion requirements for Mercury orbiter and lander missions and the

planetary orbit insertion requirements for Jupiter orbiter missions. A

600, 000-kg module could also be used in multiples for earth orbit escape for

Ganymede and Mercury orbiter and lander missions.

An alternate approach would be to develop a propulsion module with a

mass of approximately 300, 000 kg. The module could be used singularly for

earth orbit escape for all aerobraker missions (orbiter and lander), all Mars

orbiter missions, some Mars landing missions, and all Venus missions

(orbiter and lander). A single 300,000-kg module could also be used for

planetary orbit insertion for Ganymede orbiter and landing missions, Jupiter

orbiter missions, and Mercury orbiter missions provided high eccentricity

parking orbits are used. Two of the modules would satisfy the planetary

orbit insertion requirements for Mercury lander missions and Jupiter orbiter

missions. The Jupiter orbiter missions which fall within this range of capa-

bility need not be considered, however, since Ganymede missions can be per-

formed with lesser total requirements.

A third alternative would be the development of a module with a mass of

150, 000 to Z00,000 kg which could be used either singularly, or in multiples,

to satisfy the earth orbit escape requirements of all Mars and Venus missions.

Itwouldnot be necessary to cluster more than four of these modules. A lesser

number would suffice depending on the opportunity, crew size, and orbit

eccentricity. A 150,000-kg module would also be compatible with the plane-

tary orbit escape requirements of Mercury, Jupiter, and Ganymede missions.

Two of the modules could be used for planetary orbit insertion for Ganymede

and Jupiter missions. A 150,000-kg module would also satisfy the earth

orbit escape requirements of all flyby missions considered (Vesta, Ceres,

and Jupiter) except the Ceres missions in the more unfavorable launch

opportunities. Of the alternatives considered, only the last one is compatible

with the capabilities of the uprated Saturn V launch vehicles.
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Criterion 3

The chemical versus nuclear upper stage evaluation criterion applies to

the Earth orbit escape module for Mars and Venus retrobraker missions.

The nuclear Earth orbit escapepropulsion module requirements for the Mars

missions investigated vary from 130,000 kg to 520,000 kg where the upper

bound is defined by the 1999 Mars lander mission with chemical upper stages,

a crew of eight men, and a circular parking orbit. The upper bound can be

reduced to 420,000 kg when elliptical parking orbits are considered. The

upper bound would increase to 700,000 and 900,000 kg for elliptical and

circular orbits respectively if crew sizes of twenty menwere considered.

The propulsion module mass requirements will be comparable to the range of

requirements which satisfy the aerobraker versus retrobraker criterion if the

lander missions which have the higher requirements are restricted to crew

sizes of less than twenty men and/or elliptical planetary parking orbits.

Therefore, the modules which satisfy the aerobraker versus retrobraker cri-

terion (i.e., the 150,000 kg, 300,000 kg and 300,000 kg modules) can also

satisfy the chemical versus nuclear upper stage criterion.

Criterion 4

Minimizing the number of propulsion modules developed would be

desirable from the standpoint of minimizing the number of development pro-

grams which must be undertaken. The minimization of the number of mod-

ules developed can best be accomplished by developing a limited number of

modules which could be used either singularly or in multiples to accomplish

all maneuvers for the majority of the mission objectives and mission oppor-

tunities. This is basically the criterion which was utilized in the investigation

of the cornrnon module requirements for missions which employ circular

planetary parking orbits. Applying the same criterion to the elliptical orbit

missions could result in the same common module requirements but with

increased mission capability. The increased capability could be an increase

in crew size, probe mass, stay time, or combinations thereof. The increased

capability would be achieved by utilizing eccentric planetary parking orbits

during those missions which have the greater requirements. An alternate

approach would be to develop smaller common propulsion modules (i.e., less

than the 75,000 and 300,000 kg modules considered during the investigations

of circular orbits) on the assumption that only eccentric Dlanetary parking

orbits would be used during those missions which impose the maximum

requirements.

Criterion 5

Minimizing the number of propulsion modules in the total system could

be desirable on the basis of decreased system complexity and increased sys-

tem reliability. Minimizing the number of propulsion modules in the total

- Z06 -
SD 67-6ZI-5



system does not necessarily imply minimizing the total number of modules

developed. For example, one module could be developed for performing

each of the major propulsive maneuvers. This would result in only three

propulsion modules in the total system for any mission but itwould also

require the development of at least three modules.

As an alternative, one module could be developed which could be used

singularly for planetary orbit escape and in pairs for planetary orbit inser-

tion. A second module could then be developed for Earth orbit escape. This

would require the development of only two modules but would require four

modules in the total system.

One other possibility which exists is the utilization of a single restart-

able module which could be used for multiple maneuvers. In the limit, this

would result in only one module in the total system and one module developed.

Such an approach, i.e., only one module, would not be feasible for the entire

family of missions considered. The utilization of a restartable module does

appear attractive, however, for performing both the planetary orbit escape

and planetary orbit insertion maneuvers. One of the basic problems

encountered when selecting common propulsion modules for the circular orbit

missions is the selection of the small planetary orbit escape module. This

module must be grossly overdesigned for the planetary orbit escape maneu-

vers in order to be capable of performing the planetary orbit insertion maneu-

ver. This difficulty can be avoided by utilizing a single restartable

propuls ion module.

Some insight regarding the desirable mass of a restartable propulsion

module can be obtained by considering the sum of the optimized planetary

orbit insertion and escape modules. (The sum of these modules is not, of

course, the module mass which would be achieved by optimizing the mass of

a restartable module. ) For crew sizes of eight men, the sum of the opti-

mized planetary orbit insertion and planetary orbit secape propulsion mod-

ules varies from 75,000 kg for the Mars orbiter missions to approximately

200,000 kg for lander missions with crew sizes of eight men. It was shown

previously that a module with a mass Of 150, 000 to 200, 000 kg could satisfy

the requirements of some mission phase for all mission objectives for the

opportunities being considered. If the module had a restart capability, a

single module could be used for both planetary orbit insertion and escape for

Mars orbiter and lander missions with a crew size of eight men and for

Venus missions with either larger crew sizes or larger probe complements.

Multiples of the module could be used to perform both the planetary orbit

insertion and escape maneuvers for all other mission objectives with the

exception, perhaps, of the Mercury lander missions. As discussed pre-

viously, the same modules could be used without a restart capability for

earth orbit escape for Mars and Venus missions.
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A second propulsion module would be required for planetary orbit

insertion for Mercury missions and for earth orbit escape for Jupiter or

Ganymede missions if a single intermediate size restartable module were

developed. The 600,000 kg propulsion module discussed previously appears

to be a desirable module for performing the above maneuvers. The module

could be used singularly for the Mercury planet orbit escape maneuver and

multiple modules could be used for earth orbit escape for Ganymede and

Mercury orbiter and lander missions and for Jupiter orbiter missions.

The effects of using single stage with a restart capability for per-

forming both the planetary orbit insertion and the escape maneuvers were

investigated for two Mars opportunities (1988 and 1999 oppositions) and one

Venus opportunity (1988 inferior conjunction). The use of a restartable mod-

ule has operational advantages since flexibility in the distribution of the

incremental velocity requirements could be achieved. If single stages were

used for each maneuver, even more propellant would be required for launch

window purposes. By using restartable stages, any propellant which is not

used due to a near nominal transplanet mission profile could be used to pro-

vide additional mission flexibility, i.e. , longer stay time, shortened trans-

Earth trip time, or more launch window capability at the planet. The use of

a restartable stage also has disadvantages, e.g., restart of a nuclear engine,

effective use of cool-down propellant and rendezvous near a hot reactor.

These are probably not insurmountable if justification is sufficient. The

above problems are avoided if chemical propulsion modules are employed.

The effects of using a restartable stage for performing the planetary

orbit insertion and escape maneuvers for the three missions considered are

shown in Figures 98, 99, and 100, respectively. The assumed propulsion

module had a stage mass of 16,200 kg and a total propellant capacity of

100,000 kg. The engine was assumed to have a thrust of 889,640 newtons

(200,000 lbs) and a mass of 15,000 kg. The stage mass and engine mass are

based on the scaling equations defined in the Weight Scaling Equations section

of this Appendix. The resultant total module mass (including insulation,

meteoroid protection, and the interstage) was near the maximum capability

of the Saturn V with uprated engines and a lengthened first stage (153,000 kg).

The resultant mass requirements are shown in Figure 98 for the 1988

Mars opportunity. The lower solid lines represent the sum of the optimally

sized planetary orbit insertion and escape propulsion modules. The corre-

sponding optimally sized Earth orbit escape propulsion module mass is shown

by the upper solid curves. The effects of using the restartable module are

shown by the dashed curves. The lower curves are for the planetary orbit

insertion and escape maneuvers while the upper curves are for the Earth orbit

escape maneuver. The numbers to the right of the curves indicate the number

of propulsion modules required to accomplish the maneuvers. In the case of

the Earth orbit escape curves, the first numeral defines the number of upper

stages and the second the number of Earth orbit escape stages.
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Figure 100. Fixed Propulsion Module Mass Requirements

(1988 Venus Inferior Conjunction]

- Zll -

SD 67-621-5



In the case of the 1988 Mars orbiter missions, a single restartable

module can be used in the planetary vicinity and two modules for Earth orbit

escape for all accentricities. For the lander missions, two modules are

required for the planetary maneuvers at the lower eccentricities. Earth

orbit escape can be performed using either two or, at the lower eccentrici-

ties, three modules.

Similar results were obtained (Figure 99) when the 1999 Mars oppor-

tunity was considered. However, three propulsion modules were required

for Earth orbit escape for the lander missions even at the highest ecentricity

cons ide red.

The requirements for the Venus mission considered are shown in

Figure 100. Again, no more than two modules were required in the plane-

tary vicinity. As many as four modules were required for Earth orbit escape

when the larger (50,000 kg) probe mass was considered.

C ONC LUSIONS

The feasibility of developing common modules which are compatible with

the requirements of both the nearer-term and the advanced manned planetary

missions has been demonstrated. The specific modules which are ultimately

developed will be dependent upon the constraints imposed during the selection

of the missions and the modules.

It has been shown that it would be possible to develop a single Earth

reentry module which could be used for the majority of the mission objectives

and mission modes considered during this study. The use of the Apollo con-

figuration would necessitate the elimination of the direct Mars missions and

the Ceres missions unless a pre-entry retrobraking maneuver is utilized or

the mission incremental velocity requirements are increased.

A single mission module could be utilized which is off-loaded in crew

and consumables to satisfy particular mission requirements. An alternate,

and perhaps more attractive approach, would be to utilize a modular concept

wherein floors are added as required by the missions.

Finally, the feasibility of developing common propulsion modules has

been demonstrated. Of particular significance is the conclusion that, if

properly selected, the propulsion modules which will be required for the

nearer-term missions can be utilized for the advanced missions. Therefore,

prior to the definition of the design requirements of the next family of pro-

pulsion modules, the entire family of potential missions should be consid-

ered. In this manner, the modules which are developed for the nearer-term

missions will also be capable of satisfying the requirements of more advanced

missions.
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The various propulsion module combinations which are considered to be

particularly attractive have been shown earlier (Table 19). This section can

be most appropriately concluded by summarizing the applicability of the

various module sizes to the family of missions considered in this study. This

summary is contained in Table 21 for both nuclear and chemical propulsion

systems.

Several interesting conclusions are apparent from the table, e. g., (1) A

75,000 kg nuclear module is appropriate for all missions except Ganymede;

(2) A 150,000 kg nuclear module is appropriate for all missions except the

asteroids. Moreover, such a module seems appropriate for Venus and Mars

missions if chemical stages are employed at the planet or if aerobraking is

used; (3) Complete propulsion system commonality exists between Mars and

Venus missions; (4) To achieve all mission objectives a nuclear module of at

least 600,000 kg will be necessary; and (5) Missions to Mars and Venus can be

carried out with chemical propulsion modules which do not exceed 300,000 kg
in size.

Any conclusions concerning propulsion module mass requirements must

be tempered in view of the uncertainties inherent in their development. Fore-

most among these uncertainties is the projection of technology into the post-

1980 time period. Unquestionably the values quoted herein are subject to
further refinement. Nevertheless a fundamental conclusion has been reached,

namely, that feasibility of the concept of commonality has been demonstrated.

- 2,13 -

SD 67-6Z1-S

L



Table Zl. Applicability of Common Propulsion Modules

Mis sion Objective

Mercury

Venus

Mars

75 150

X

X

X

Ceres X

F

Ve s ta X

Jupiter X

X

X

A

X

C

A

X

C

X

X

F

Ganymede X
X

X

Propulsion Module Mas s (10 3 kg)

Nuclear

300 600

X

X

A A

X

X

C C

A A

X

X

C C

X

X

X

X

X

X

1200

X

X

X

F

X

X

X

X

X

100

X

X X

X

X X

X

Chemical

300 600

A

A

X - propulsion system of specified type

C - chemical propulsion systems at planet arrival/departure

A - aerobraking capture

F - flyby

- 214-

SD 67-621-5



REFERENCES

.

Z.

Be

o

.

6.

.

1

Propulsion Requirements for Soft Landing in Extraterrestrial Environ-

ments. NAA Rocketdyne, (Feb. 1963).

U.S. Government Memo, J.L. Anderson to P.R. Swan, Candidate Life

Support Systems for Use With the Contracted Study of Commonality for

Manned Planetary Missions, (18 August 1966).

U.S. Government Memo, J.L. Anderson to P.R. Swan. Effect of

Hypersonic Earth Atmospheric Entry Speeds Upon the Characteristics

of Three Vehicle Shapes (24 August 1966).

Shapland and Munroe. A Comparative Design Analysis of Three Con-

figurational Families for Manned Earth Entry at Hyperbolic Speeds.

AIAA Paper No. 66-489, Presented at Aerospace Science Meeting,

Los Angeles, California, June 27-29, 1966.

NASA letter No. 16602 MA from J. Deerwester to A. Codik (12/66).

Manned Mars/Venus Flyby Vehicle Systems Study, SID 65-761-3-A,

(June 1965).

Manned Planetary Flyby Mission Based on Saturn/Apollo Systems

(NAS-8-18025) Vol. D Spacecraft and Subsystem Integration

SID 67-110-4 (i February 1967).

A Study of Technological Requirements Common to a Family of Manned

Planetary Missions, First Interim Report, SID 66-1883

(16 December 1966).

- 215 -

SD 67-621-5



ERRATA

Technological Requirements Co_mon to Manned Planetary Missions

Final Report - Appendix D, SD67-621-5

1. Page 57 - last term inside brackets of equation which defines

A_m for elliptical bulkhead geometry should read as follows:

2  a/Aa2-1 -1

2. Page 88 - terms of left side of last two equations should read as
follows :

[

o

_=_.

1

o

7.

.

. [w(.2o)%]
£atC KEC

Page 139 - third sentence of second paragraph refers to Tables 4

through 19 of Appendix A.

Page 142 - Table 15: The mass in Earth orbit should equal the sum

of the two preceeding weights.

Page 165 - last two sentences of second paragraph should read as
follows :

"For orbiter missions, the decreases in the mass requirements

are fifty percent for planetary orbit insertion and forty percent for

Earth orbit escape. The corresponding decreases in the mass requirements

for lander missions are forty percent for planetary orbit insertion

and twenty percent for Earth orbit escape."

Page 203 - Table 19: Replace column heading 'N/C" by "600".

Page 204 - Table 19 (continued): The entries in the table should be

on three separate lines.

Page 206 - last sentence of first paragraph: The value quoted for

the third module weight should be 600,000 kg.
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lO.

ll.

Page 209-211 (Figures 98-101): The left portion of each figure

applies to orbiter missions; the right portion applies to lander
missions.

Page 21B - first sentence of second paragraph: Delete the

exclusion of Ganymede.

Page 214 - Table 21: Enter "F" under lO0,O00 kg chemical propulsion

module for Vesta, Ceres, Jupiter flybys; for nuclear system modules

mass for Vesta flyby is 75,000 kgonot 1,200,000 kg.
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